Δίκτυα Δεδομένων WiMAX

Δημητρικόπουλος Νικόλαος
Παπαδημητρίου Αργύρης

[Ακαδημαϊκό έτος 2005-06]
[Διδάσκοντα: Απόστολος Γκάμας]
Δίκτυα δεδομένων WiMAX

Δημητρακόπουλος Νικόλαος
Α.Μ. 2024200400010
e-mail nikosd@uop.gr

Παπαδημητρίου Αργύρης
Α.Μ. 2024200400034
e-mail pa34@uop.gr
Πίνακας Περιεχομένων

ΕΙΣΑΓΩΓΗ .. 4

1 ΕΙΣΑΓΩΓΗ ΣΤΟ WIMAX ... 4
 1.1 Πρόολογος ... 4
 1.2 Ιστορική Αναδρομή ... 5
 1.3 Γενικά Χαρακτηριστικά ... 6

2 ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΚΑΙ ΠΡΟΚΛΗΣΕΙΣ .. 9
 2.1 Προκλήσεις στο 802.11 .. 9
 2.2 Πλεονεκτήματα του 802.16 ... 10
 2.3 Τα πλεονεκτήματα της προτυποποίησης ... 10
 2.4 Πρόβλημα συμμετοχής και σύγκριση του 802.16 με άλλες τεχνολογίες ... 11

ΤΟ ΠΡΩΤΟΤΥΠΟ 802.16 .. 13

3 ΜΟΝΤΕΛΟ ΑΝΑΦΟΡΑΣ .. 13

4 ΦΥΣΙΚΟ ΕΠΙΠΕΔΟ (PHY) ... 14
 4.1 WirelessMAN-SC PHY .. 14
 4.2 WirelessMAN-SCa PHY ... 16
 4.3 WirelessMAN-OFDM PHY ... 17
 4.4 WirelessMAN-OFDMA PHY ... 20
 4.5 WirelessMAN-HUMAN PHY ... 20

5 ΕΠΙΠΕΔΟ ΕΛΕΓΧΟΥ ΠΡΟΣΒΑΣΗΣ ΜΕΣΟΥ (MAC) ... 21
 5.1 Γενικά ... 21
 5.2 Ασφάλεια (Security Sublayer) ... 22
 5.2.1 Γενικά .. 22
 5.2.2 Υποπλευτικό Ασφαλείας ... 22
 5.3 ΜΑC Common Part Sublayer (MAC CPS) .. 23
 5.3.1 Γενικά .. 23
 5.3.2 MAC PDUs .. 24
 5.3.3 Εισόδος χρήσης στο δίκτυο .. 24
 5.3.4 Μηχανισμοί αίτησης και διάκρισης χώρου (Bandwidth Request–Bandwidth Allocation) 25
 5.3.5 Scheduling Services .. 26
 5.3.5.1 Unsolicited Grant Service (UGS) .. 26
 5.3.5.2 Real-Time Polling Service (rTPS) .. 27
 5.3.5.3 Non-Real-Time Polling Service (nTPS) ... 27
 5.3.5.4 Best Effort (BE) Service .. 27
 5.3.6 QoS ... 27
 5.3.6.1 Παροχή QoS (Provision). .. 28
 5.3.6.2 Μηχανισμοί QoS .. 30
 Κατανόηση ... 30
 5.3.6.2.1 Προσβολή στο κανάλι ... 30
 5.3.6.2.2 Αρχεία .. 30
 5.3.7 ARQ ... 32
 5.3.8 Υποστηρίζομενες τοπολογίες ... 32
 5.3.8.1 Σημείο προς πολλά σημεία (PMP) .. 32
 5.3.8.2 Mesh ... 32
 5.4 ΔΡΟΜΟΣ ΣΥΓΚΡΙΣΗΣ (CS) .. 33

6 ΜΟΒΙΛΕ WIMAX (802.16e) ... 35
 6.1 Εισαγωγή .. 35
 6.2 Φυσικό Επίπεδο .. 37
 6.2.1 OFDMA ... 37
 6.2.2 Scalable OFDMA-SOFDMA ... 38
 6.3 Τεχνικές μετάδοσης ... 38
 6.4 Παραγραφή MAC επιπέδου ... 39
 6.5 Αρχιτεκτονική .. 39
ΕΦΑΡΜΟΓΕΣ - ΣΥΜΠΕΡΑΣΜΑΤΑ ... 40

7 ΕΦΑΡΜΟΓΕΣ .. 40
7.1 Γενικά ... 40
7.2 Διεθνείς συνεργασίες ... 41
7.3 Το WiMAX στον κόσμο .. 41
7.3.1 2006 ... 41
7.4 WiMAX στην Ελλάδα .. 43

8 ΧΡΗΣΙΜΟΤΗΤΑ, ΣΥΜΠΕΡΑΣΜΑΤΑ ... 45
8.1 Χρησιμότητα ... 45
8.2 Συμπεράσματα .. 46

ΠΑΡΑΡΤΗΜΑ ΚΑΙ ΒΙΒΛΙΟΓΡΑΦΙΑ ... 47

9 ΠΑΡΑΡΤΗΜΑ Α – ΣΥΝΤΟΜΟΓΡΑΦΙΕΣ .. 47
10 ΠΑΡΑΡΤΗΜΑ Β – ΠΛΗΡΟΦΟΡΙΕΣ .. 51
10.1 OFDM: ... 51
10.2 QAM modulations: .. 52
10.3 Interleaving στο OFDM: .. 53
10.4 Automatic Repeat Request (ARQ): ... 53
10.5 Adaptive Antenna Systems (AAS) και συστήματα Multiple-Input Multiple-Output (MIMO): 54

11 ΠΑΡΑΡΤΗΜΑ Γ – ΜΕΛΗ ΤΟΥ WiMAX FORUM ... 57
12 ΒΙΒΛΙΟΓΡΑΦΙΑ: .. 58
1 Εισαγωγή στο WiMAX

“Στην κούρσα που έχει επιβάλλει η σύγχρονη εποχή για καλύτερη ασύρματη πρόσβαση στον Ιστό, το WiMAX θα έστελνε το χρυσό από το WiFi”

1.1 Πρόλογος

Μία σημαντική υπόσχεση της ασύρματης ευρυζωνικής δικτύωσης ήταν ότι θα παρέχει ασφαλή, γρήγορη και σχετικά ψηλή μετάδοση δεδομένων και υπηρεσιών καλύπτοντας μεγάλες περιοχές με επιχειρήσεις και οικιακούς χώρους. Δυστυχώς όμως οι υποχρέωσεις αυτές διαφεύγουν στο πρόσφατο παρελθόν λόγω του ανοιχτού του της τεχνολογίας των τρεχούσων τεχνολογιών όσο και του υψηλού κόστους του εξοπλισμού δικτύωσης.

Το σημερινό άρχισε να αλλάζει με τη δημιουργία ενός νέου, περισσότερου και βιομηχανικά τυχαία θεωρημένου προτύπου, το IEEE 802.16, που αντιπροσωπεύει μια σχεδιασμένη της πιο προηγμένης τεχνολογίας και τη δυνατότητα για διαλογισμικότητα μεταξύ του εξοπλισμού που χρησιμοποιείται. Έτσι η ασύρματη ευρυζωνικότητα έχει κερδίσει την αξιοπρέπεια που έλαβε στο παρελθόν και είναι άτομη για άμεση εφαρμογή σε κάθε μητροπολιτικό δίκτυο (MAN).

Τα πρώτα τσιτ βασίζονται στα πρότυπα 802.16 έχουν αρχίσει να κυκλοφορούν από ένα σημαντικό αριθμό κατασκευαστών ημικινδών. Βέβαια θα περάσει κάποιος χρόνος μέχρι να εμφανιστούν μέσα σε ολοκληρωμένα συστήματα και να πιστοποιηθούν για τη συμμόρφωση και τη συμβατότητα με άλλα πρότυπα, αλλά ακόμη και όταν μπορούμε να πούμε ότι η ασύρματη ευρυζωνικότητα έγινε στο επίπεδο της πρώην ημερών.

Τέτοιες εξελίξεις θα παράγουν τη βάση ώστε η ασύρματη ευρυζωνικότητα θα καθιερώσει μια πραγματικά ανταγωνιστική παρουσία στην παρόντα αγορά, κάτι που μέχρι τώρα δεν έχει καταφεύγει. Τα εκατόστα άλλα έχουν γίνει στην ψηφιακή ραδιotechnολογία κατά τα δύο εκατόστα της τελευταίας δεκαετίας, έπειτα από πρότυπα 802.16, και η ασύρματη πρόσβαση έχει εξελιχθεί σε μια βιώσιμη ευρυζωνική τεχνολογία πρόσβασης, όπου μέχρι πριν τόσο χρόνια ήταν ουσιαστικά και στα πιο ακόμη δεν είχε η προτεινόμενη τεχνολογία προσβάσεως προσφέροντας το χαμηλότερο κόστος σε ανάλογα με την απόδοσή της, καθιερώνει την ευρυζωνικότητα και την αρχική ασύρματη προσβασιμότητα, απολαμβάνει ανταγωνιστικά πλεονεκτήματα, καθώς παρέχει την κυκλοφορία των χρηστών και υπηρεσιών την ευελιξία που έχει μια ασύρματη σύνδεση.

Σε πολλές περιπτώσεις, η ασύρματη ευρυζωνική σύνδεση μπορεί να είναι η προτεινόμενη τεχνολογία πρόσβασης προσφέροντας το χαμηλότερο κόστος σε ανάλογα με την απόδοση, την περιοχή και την ταχύτητα υπηρεσιών. Λόγωι και σε σχέση με την ευρυζωνική και ασύρματη σύνδεση, έχει καθιερωθεί ως ένας βασικός στοιχείο ανταγωνισμού πλεονεκτήματα, καθώς παρέχει την κυκλοφορία των χρηστών και υπηρεσιών την ευελιξία που έχει μια ασύρματη σύνδεση.

Το ψηφιακό επίπεδο είναι ένα μόνο μέρος του δικτύου υπηρεσιών και η επιμονή στην ασύρματη τεχνολογία, αγνοώντας τη γενική δικτυακή αρχιτεκτονική, έχει μικρό αποτέλεσμα. Το ψηφιακό
επίπεδο, το επίπεδο πρόσβασης, και τα άλλα επίπεδα υποστηρίζουν τελικά το επίπεδο εφαρμογών, και το ζήτημα πρέπει πάντα να είναι στο μυαλό του διαχειριστή δικτύου είναι πώς οι εφαρμογές και οι υπηρεσίες που ζητούν οι χρήστες θα μπορούν να παραχωρηθούν με το λιγότερο δυνατό κόστος.[APR05]

Το WiMAX είναι μια τεχνολογία που βασίζεται στα πρότυπα 802.16 της IEEE και επιτρέπει ασύρματη μετάδοση στο τελευταίο μιλί του δικτύου, σεναλακτική λύση στις ανάγκες συνδέσεων και την τεχνολογία DSL. Το WiMAX είναι σε θέση να παρέχει σταθερή, φροντική και προσφάτως, κινητή ασύρματη ευρύζωνη σύνδεση, χωρίς να είναι απαραίτητη η άμεση οπτική επαφή με έναν σταθμό βάσης. Σε μια τυπική ακτίνα κυμαλωτής κάλυψης που καμπάνεται από τρία έως δέκα χιλιόμετρα, ο επισήμος εξοπλισμός WiMAX Forum Certified™, θα είναι σε θέση να παρέχει χωρητικότητα από 1 έως 70 Mbps ανά κανάλι, τόσο για τις σταθερές εφαρμογές όσο και για τις φορητές. Αυτό είναι αρκετά εύρος ζώνης για να υποστηρίζει ταυτόχρονα εικονοτάξεις επιχειρήσεων με τη σύνδεση T1 και χιλιάδες οικιακούς χρήστες με συνδέσεις DSL. Λυπάμαι ότι η τεχνολογία WiMAX θα ενσωματωθεί στους υπολογιστές και στους PDAs (υπολογιστές παλάμης) μέχρι το 2007, επιτρέποντας στις αστικές περιοχές και στις μικτές πόλεις να γίνουν ένα είδος μητροπολιτικών δικτύων για τη χορητική ευρύζωνη ασύρματη πρόσβαση.

1.2 Ιστορική Αναδρομή

Τον Ιούλιο του 1999 η IEEE ξεκίνησε την ανάπτυξη του προτύπου IEEE 802.16. Αυτό, δεσμευόταν την διεπαφή WirelessMAN (Metropolitan Area Network) για ασύρματα μητροπολιτικά δίκτυα στο έναρξη των συγχωνεύσεων από 10 έως 66 GHz. Το πρότυπο αυτό δημοσιεύθηκε στις 8 Αυγούστου του 2002. Δημιουργήθηκε μέσω διάφορων διαδικασιών, με την προσθήκη εικονοτάξεων μηχανισμών από τους μεγαλύτερους παγκόσμιους κατασκευαστές και εταιρείες. Το 2003, το πρότυπο 802.16 έγινε η πιο πολλά υποσχόμενη, ανεξάρτητη τεχνολογία, σχεδιασμένη με κατάλληλη διεύθυνση υπολογιστών σε ασύρματο περιβάλλον.

Το 802.16 σχεδιάζεται με την υποστήριξη των συχνών αναφέρεται από τους τηλεπικοινωνιακούς παρόχους ως «κατά μήκος του μεγαλύτερον ποικιλών θυσίας» το μητροπολιτικό δίκτυο. στη στάθμη από την αρχή συνεχίζεται κατά μήκος μιας αναγκής διευρύνσεως, μεταξύ των μηχανισμών που καμπάνεται από τους μεγαλύτερους συνδυαστικούς μηχανισμούς και εταιρείες. Το 2003, το πρότυπο 802.16 έγινε η πιο πολλά υποσχόμενη, αναγκής τεχνολογία, σχετικά με κατάλληλη διεύθυνση υπολογιστών σε ασύρματο περιβάλλον.

Το πρότυπο 802.16a, που ξεκίνησε στις 30 Μαρτίου του 2000 και έγινε αποδεκτό στις 29 Ιανουαρίου του 2003, σχεδιάζεται για να γίνει ένα πρότυπο για ασύρματα MAN/WAN (Metropolitan / Wide Area Network) από την αρχή ως το τέλος του. Πρόκειται να συμπεριληφθεί και στο πρότυπο αυτό που μοιράζονται οι ελεύθερες ροώνες χρήσης τις πλειονεκτητές της περιόδης υπηρεσίας (QoS) που υποστηρίζεται, με υποπτές στην χρησιμοποίηση πολλά υπηρεσίες (QoS – Quality Of Service) στον ίδιο σταθμό αυτοκρατορίας.

Το πρότυπο 802.16a έχει τα ακόλουθα χαρακτηριστικά:

Β Είναι σχεδιασμένο για την ζώνη συγχωνεύσεων από 2 έως 11 GHz και υποστηρίζει τόσο ελεύθερες ροώνες χρήσης ώστε αδειοδοτούμενες ζώνες συγχωνεύσεων (σε ανάθεση με τον αρχικό σχεδιασμό του 802.16 που έχει γίνει για τα 10-66GHz).

Β Προσδιορίζει το φυσικό επίπεδο και το επίπεδο ελέγχου πρόσβασης μέσω της ασύρματης διαφάνης για σταθερές συνδέσεις σημείο-με-πολλά σημεία (Point-to-Multipoint).
Προσδιορίζει προορισμούς της δικτύωσης τύπου mesh για ευημερικά συστήματα σε εκλεκτικές ζώνες συνεργασίας.

Το πρότυπο 802.16 είναι ένα προηγμένο τεχνολογικό πρότυπο. Η IEEE το υποστηρίζει σε μία παράκληση βάση, όπως και ο οργανισμός ETSI με το HiperMan για Ευρωπαϊκές υλοποιήσεις. Οι αλλάξεις που υιοθετούνται από οποιοδήποτε σύμβολο αντικειμετρίζονται στις βασικές τεχνικές προεξοφλήσεως. Υποστηρίζεται παράλληλα από προστάθεις που γίνονται από το WiMAX Forum™.

Ο εξοπλισμός που είναι βασισμένος στο πρότυπο 802.11 (WiFi™), όταν χρησιμοποιείται ως τεχνολογία για δίκτυα MAN ή WAN πιθανότατα δεν μπορεί να προσφέρει το βαθύ αξιοποίηση του εύρους ζώνης που παρέχεται αλλά επίσης υστέρα και τις λειτουργίες διαχείρισης και ποιότητας υπηρεσίας (QoS) που προσφέρει ο αντίστοιχος εξοπλισμός που είναι βασισμένος σε 802.16.

Τον Ιούνιο του 2004, η οργανισμός προτυποποίησης της IEEE (IEEE-SA, Standards Association) ανακοίνωσε την επίσημη έκδοση ενός νέου προτύπου, του 802.16-2004, το οποίο αναθέωρησε και αντικαθίστα τα 802.16, 802.16a και 802.16RevD. Αυτή η ανακοίνωση σηματοδότησε ένα νέο κομβικό σημείο για την ανάπτυξη του προτύπου αυτού καθώς και των τεχνολογιών που προστάθηκαν από το WiMAX Forum™. Ένα σημείο – κλείνει είναι ότι το 802.16-2004 βοηθάει να εκκαθαριστεί το πρότυπο για την ευρύτερη βοηθόμηχανία, περιλαμβάνοντας τελικούς χρήστες αλλά και παρόχους. Είναι μετα από αυτό ξέκινησε μία νέα φάση όπου πλούσια αναμένονται προορισμών βασισμένα σε αυτή την τεχνολογία με κόστος, πανομοιότυπο με αυτό των προϊόντων που είναι βασισμένα στο 802.11 αλλά παραμεριμνήχρονο αποδοχής της νέας αυτής τεχνολογίας (περίπου δύο με τρία χρόνια).

Το νεότερο μέλος της οικογένειας προτύπων 802.16 είναι το 802.16e ή όλων mobile WiMAX. Αυτό αναφέρεται για υλοποιήσεις δικτύων με κινήσεις και ασχολείται και με την καταμητοπίζωση χρηστών. [RC1]

1.3 Μηχανικά Χαρακτηριστικά

Το πρότυπο IEEE 802.16 όπως αναφέρθηκε, σχεδιάστηκε ώστε να λειτουργεί σε μια ευημερία περιοχής συνεργασίας η οποία εκτείνεται από 2 ως 66 GHz και υποστηρίζει ταχύτητες απόσπασματικής μετάδοσης ως και 70Mbps. Μια σημαντική διαφορά του προτύπου IEEE 802.16 σε σχέση με το 802.11 είναι ότι το πρώτο μπορεί να χρησιμοποιηθεί και σε συνθήκες που δεν υπάρχει αποτελεσματική επαφή μεταξύ σταθμών και χρήσης, οπότε με ωθητική μετάδοση χαμηλός τόσο 70Mbps. Το WiMAX σχεδιάστηκε κατα βάση ώστε να καλύπτει δικτύων συνδέσεων σημείου προς πολλά σημεία χωριών ωστόσο αποκλειστικά και τη χρήση του για συνδέσεις σημείου προς σημεία καθώς και τοπολογίες mesh. Η διαμόρφωση της οποίας χωρίς χρησιμοποιείται είναι η OFDM (Orthogonal Frequency Division Multiplexing). Πρόκειται για μια πολύ ανθεκτική διαμόρφωση σε ότι αφορά παραμέτρους εξωτερικών παρεμβάσεων ειδικότερα στις συνθήκες ώστε των 2 GHz όπου το πρότυπο χρησιμοποιείται. Άλλα σημαντικά χαρακτηριστικά του προτύπου είναι η υποστήριξη QoS, έξυπνων-προσαρμοστικών χειριστών (Adaptive Antenna System – AAS), υποστήριξη για διαμορφωτικούς τύπους δικτύων (ATM, Ethernet, PPP κ.λ.π.) για καλύτερη διασυνδεσιμότητα κ.α.

1 Mesh: Η δικτύωση πλέγματος είναι ένας τρόπος να καθοδηγηθούν τα σημεία, η οποία εφαρμόζεται μεταξύ των κόμβων. Επιτρέπει τη συνεχής συνδέσεις και την ανεξαρτησία λήξης από τις απαραίτητες ή παρεμβατικές συνθήκες, παρατηρώντας “hoping” από κόμβο σε κόμβο άρως ώστε προστατεύει το προσωπικό. Ένα δίκτυο πλέγματος οι οποίοι συνδέονται μεταξύ των κόμβων σε ένα δίκτυο πλέγματος δίνει ως όπως είναι ενιαία συνδεδεμένο δίκτυο. Η δικτύωση πλέγματος είναι μια υποκατάσταση της ad-hoc δικτύωσης [WP1]
Τύπωσα, ένα σύστημα WiMAX αποτελείται από δύο μέρη:

Ένας σταθμός βάσης WiMAX: Ο σταθμός βάσης αποτελείται από τις ηλεκτρονικές εγκαταστάσεις και έναν πύργο WiMAX. Χαρακτηριστικά, ένας σταθμός βάσης μπορεί να καλύψει ακτίνα μέχρι 10 χλμ. (Θεωρητικά, ένας σταθμός βάσης μπορεί να καλύψει ακτίνα μέχρι 50 χλμ, αντιστοίχως οι πρακτικές μελέτες το περιορίζουν σε περίπου 10 χλμ). Οποιοσδήποτε ασύρματος κόμβος κάθετα στην περιοχή κάλυψης θα είναι σε θέση να έχει πρόσβαση στο Διαδίκτυο.

Ένας δέκτης WiMAX: Ο δέκτης και η κεραία θα μπορούσαν να είναι ένα αυτόνομο μικρό κύκλωμα ή τμήμα PCMCIA που βρίσκεται στον υπολογιστή ή στον τηλεφώνο σας. Η πρόσβαση στον σταθμό βάσης WiMAX είναι συνήθως μέσω της κεραίας και προτιμάται με την περιοχή κάλυψης το περίπου 10 χλμ. Οποιοσδήποτε ασύρματος κόμβος μέσα στην περιοχή κάλυψης του δεκτή και κεραία θα έχει πρόσβαση στο Διαδίκτυο.

Σταθερά Τερματικά: Το πρότυπο 802.16-2004 (που αντικατέστησε το 802.16-2004 REVd) είναι σχεδιασμένο για συνδέσεις σταθερής πρόσβασης. Αναφέρεται και ως «σταθερό ασύρματο» ("fixed wireless") γιατί χρησιμοποιεί κεραίες που είναι τοποθετημένες στον χώρο του συνδρομητή. Η κεραία είναι τοποθετημένη στην οροφή του κτηρίου ή σε κάποιον ισόγειο, όπως και συμβαίνει και με τα δορυφορικά πιάτα που χρησιμοποιούνται για την δορυφορική τηλεόραση. Στο 802.16-2004 προβλέπονται επίσης και εσωτερικές εγκαταστάσεις, οι οποίες όμως ενδεχομένως να μην είναι το ίδιο αποδοτικές. Βλέπουμε ότι το πρότυπο αυτό παρέχει μία αξίωση λύση για παροχή επικοινωνιών υπηρεσιών στο τελευταίο μίλι του δικτύου, έχοντας τη δυνατότητα να είναι μία εναλλακτική, ασύρματη τεχνολογία σε σχέση με τις καλωδιακές και xDSL υγρόμεσες καθώς και με τις χρηματοοικονομικές ιδιότητες όπως το WiMAX. Η λύση της Intel WiMAX χρησιμοποιεί τις ζώνες συγνωμήτων των 2.4, 3.5 και 5.8GHz. Επομένως, υποστηρίζονται τόσο η ελεύθερες ζώνες όσο και οι δεσμευμένες.
Φορητά Τερματικά:
Για τα φορητά τερματικά είναι υπεύθυνο ένα νέο πρότυπο, το 802.16e, το οποίο είναι μία προσθήκη στο ήδη υπάρχον 802.16-2004. Σκοπός του είναι η προσθήκη φορητότητας και η δυνατότητα για άμεση σύνδεση φορητών συσκευών στο WiMAX δίκτυο. Χρησιμοποιεί την OFDMA (Orthogonal Frequency Division Multiple Access), παρόμοια με την OFDM (Orthogonal frequency-division multiplexing), δηλαδή ορθογώνια πολυπλεξία διαίρεσης συχνότητας, αλλά εξελιγμένη αφού επιπλέον, «ομαδοποιεί» τις φέρουσε σε υποκανάλια. Έτσι ένας χρήστης μπορεί να εκπέμπει χρησιμοποιώντας ένα μέρος των υποκαναλιών, ή όλα ταυτόχρονα. [IN1]
2 Πλεονεκτήματα και προκλήσεις

2.1 Προκλήσεις στο 802.11

Οι συνήθεις δικτυακές τοπολογίες που χρησιμοποιούνται στο 802.11 και έχουν να κάνουν με το "τελευταίο-μίλω" ή με κάλυψη τούπο "hot-spot" χρησιμοποιούν είτε κατακλητικές κεραίες, είτε τοπολογίες τύπου mesh. Το WiFi παρέχει πιστοποίηση για επικοινωνίες "τελάκτη-σημείου πρόσβαση" (client-to-access point). Όμως, οι υλοποιήσεις που έχουν να κάνουν με επικοινωνία σημείου πρόσβασης με σημείο πρόσβασης (AP-to-AP) και σημείου πρόσβασης με πάροχο υπηρεσιών (AP-to-service provider), δηλαδή συνδέσεις κομμάτων που τυπικά είναι απαραίτητες για την συνδέση με το τελευταίο κομμάτι του δικτύου, είναι βασισμένες σε μη ανοικτά πρότυπα, κάτι που σημαίνει ότι έχουν λήγει δως καθόλου διαλειτουργικότητα. Αυτός ο αποτέλεσμα το 802.11 σχεδιάζεται για απελευθέρωση των τοπολογιών από την ανάγκη υπάρξεις ενσύρματου δικτύου, όπως στα γεωτά, τοπικά δίκτυα Ethernet, οι τοπολογίες που έχουν να κάνουν με κάλυψη μεγάλας έκτασης αποτελείς τις εξής προκλήσεις:

Β Μη προτυποποιημένη επικοινωνία μεταξύ των σημείων πρόσβασης (Access Point)

Σήμερα, οι συστήματες τέχνες που χρησιμοποιούνται για την διασύνδεση των σημείων πρόσβασης σε τοπολογίες δικτύων τύπου mesh εξαρτώνται άμεσα από την εκάστοτε υλοποίηση του κατασκευαστή. Αυτό εισηγείται ότι θα αλλάξει (μα τα δίκτυα που είναι βασισμένα στο 802.11) το 2007 με την έλευση του προτύπου 802.11s.

Β Ποιότητα Υπηρεσιών (QoS)

Ο όρος QoS αναφέρεται στην δυνατότητα του δικτύου να παρέχει καλύτερες υπηρεσίες σε επιλεγμένα είδη κίνησης. Ο στόχος του QoS είναι δίνουν προτεραιότητα σε υπηρεσίες προηγμένου χρόνου καθώς και σε διαδραστικές υπηρεσίες, οι οποίες έχουν αυξημένες ανάγκες σε εύρος ζώνης, καθυστέρηση και διακυμάνσεις καθυστέρησης, ενώ ταυτόχρονα να μην καταρρεύει η υπόλοιπη κίνηση του δικτύου. Γενικότερα, σε ζώνες συχνοτήτων που είναι ελεύθερες θα περιλάμβανε προς χρήση χωρίς συχνοτήτα, υπάρχουν προβλήματα στην εφαρμογή Ποιότητας Υπηρεσιών, αφού η υλοποίηση ενός ασύρματου δικτύου (άργοντικος) είναι ανοιχτή και ελεύθερη για όλους.

Β Υψηλά κόστη διασυνδέσεων με το δίκτυο κορμού.

Οι διασυνδέσεις αυτές αναφέρονται στο κομμάτι που ενώνει το Σήμειο Πρόσβασης (AP) με το δίκτυο κορμού του τηλεπικοινωνιακού παρόχου. Για την διασύνδεση των ασύρματων κόμβων, οι πάροχοι βασίζονται ακόμα, ως ένα μεγάλο βαθμό, σε ενσύρματα δίκτυα. Από την άλλη, αυτό το είδος των διασυνδέσεων για μεγάλες αποστάσεις, είναι εξαιρετικά ακριβέ.

Β Περιορισμένες υπηρεσίες

Χωρίς την υποστήριξη για QoS, υπηρεσίες όπως φωνή (για παράδειγμα Voice over IP – VoIP), είναι εξαιρετικά πιθανό να έχουν μειωμένη ποιότητα. Αυτό έχει ως αποτέλεσμα να είναι δύσκολη εκμετάλλευσή του.

1 Proprietary: Στη βιομηχανία υπολογιστών, η ιδιοκτησία είναι το αντίθετο ανοικτού λογισμικού. Ένα δικαστήριο σχέδιο ή μια τεχνική είναι ένα που την κορυφάζει την επί της επιχείρησης. Επίσης υπονοεί ότι η επιχείρηση δεν έχει αποκαλύψει τις προαναφερθέντες που θα επέτρεπαν σε άλλες επιχειρήσεις για να αναπαραγάγουν τα προϊόντα. Όλο και περισσότερα, οι ιδιοκτήτες αρχετεχνοοικονομικές αναφέρονται ως μεροκεντρικά. Οι καταναλωτές προηγούνται τις ανοικτές και τοποτοποιημένες αρχετεχνοοικονομικές, οι οποίες επιφέρονται σε αυτούς να συνδεθούν και να ταχείζουν παράγοντα από τους διακρατικούς κατασκευαστές.
η εμπορική χρήση τους, παρότι το εύρος των νεότερων ασύρματων τεχνολογιών είναι αρκετά μεγάλο. Αυτή τη στιγμή οι μόνες υλοποιήσεις που προσφέρονται για QoS είναι ιδιόκτητες.

Παρά τις προκλήσεις που υπάρχουν αυτή την στιγμή και αναφέρθηκαν προηγουμένως, τα ασύρματα δίκτυα χρήσιμοποιούνται ολοένα και περαιτέρω για τους εξής λόγους:

Β Οι ασύρματες λύσεις που είναι διαθέσιμες σήμερα, όπως υλοποιήσεις mesh τοπολογιών, έχουν μικρότερο κόστος και είναι πιο ευέλικτες από ό,τι οι αναλόγες λύσεις

Β Οι λύσες αυτές παρέχουν μία πρωτοπομπημένη σύνδεση μεταξύ των Σημείων Πρόσβασης (AP) και των χρηστών του δικτύου σε “hot-spot” σημεία

Β Οι πύργοι ασύρματων υπηρεσιών διαδικτύου (Wireless Internet Service Providers – WISPs) μπορούν να προσφέρουν ευρυζωνικές υπηρεσίες σε γεωγραφικά απορριπτίστες περιοχές όπως επαρχίες, υπαρχή, ημιανατολικές περιοχές κλπ.

Β Οι τοπικές διοικήσεις (Δήμους, Κοινότητες, Νομαρχίες κλπ.) μπορούν να προσφέρουν δωρεάν πρόσβαση για επιχειρήσεις ή υπηρεσίες επιχειρηματικής ανάγκης (Αστυνομία, Πυροσβεστική, κλπ.)

Β Επακτεινωτικά και επιστημονικά ιδρύματα μπορούν να παρέχουν δικτυακές υπηρεσίες στους σπουδαστές, καθηγητές αλλά και στην ευρύτερη κοινότητα

2.2 Πλεονεκτήματα του 802.16

Β Ειγνής υποστήριξη για Ποιότητα Υπηρεσίας (QoS)

Β Υψηλή απόδοση

Β Πρωτοπομπημένο

Β Υποστήριξη για εξωτερικές κεραίες

Β Υποστήριξη backbone συνδέσεων

Β Νέα τεχνολογία με ολοένα αυξανόμενη υποστήριξη από τους κατασκευαστές αλλά και από την επιστημονική κοινότητα

2.3 Τα πλεονεκτήματα της πρωτοπομπής

Σύμφωνα με το WiMAX Forum™, τα πλεονεκτήματα αυτών των προτύπων για τους κατασκευαστές, προμηθευτές αλλά και για την κοινότητα των χρηστών είναι πολυάριστα. Μερικά είναι τα εξής [IN1]:

Β Μεγαλύτερος αριθμός προϊόντων από τους κατασκευαστές μέσω πρωτοπομπημένων εξαρτημάτων για αποτελεσματικότερη παραγωγή

1 Backbone network: Ένα δίκτυο κορμού είναι το κορμό του ετήσιου επιπέδου ενός ευρύζων δικτύου υπολογιστών. Συνδέεται με τους κορμούς σε χειρολάτητες επιπέδους στην ταχεία. Τα δίκτυα κορμού υπάρχουν αυξανόμενες για να παρέχουν τη συνδεσιμότητα μεταξύ των χειρολάτητων δικτύων. Τα πρώτα ενεργά δίκτυα κορμού, ένα εναλό δίκτυο κορμού υπήρξε από τον μηχανήμα του ARPA, το οποίο διαδέχθηκε από τον μηχανήμα του ARPA και με έναν άλλο μέσω του δικτύου κορμού του ARPA, και από επολεμητικές δημιουργήσεις μεταξύ των κορμών και των άλλων κορμών μεταβλητών μέσω του εξωτερικού πρωτοκόλλου υπολογιστών (ICP). Σήμερα, δεν υπάρχει ένα μεταφρασμένο δίκτυο κορμού για το Νεοκλασικό. Μόνος, κάθε ευρύζων παραγωγής πρωτοκόλλων πρωτοκόλλων (EGP). Σήμερα, δεν υπάρχει ένα μεταφρασμένο δίκτυο κορμού για το ARPA, και ανταλλάζει την ευρύζων με άλλα δίκτυα με συμβατικές δηλώσεις [WP2]
Β Αγοράς τεχνολογίας WiMAX ανάμεσα στα προϊόντα που έχουν ένα χωρίς σύνολο από λειτουργίες και χαρακτηριστικά

Β Συμβατότητα των εξοπλισμών από κάποιον κατασκευαστή με διαφορετικές γενιές συστημάτων

Β Μερικότερο ανάγλυφο, χαμηλότερο κόστος και μεγαλύτερη απόδοση σήματος.

Β Γρηγορότερη και πιθανότερη πρόσβαση σε ένα μεγαλύτερο αίον, υψηλής ποιότητας, υπηρεσιών

Β Σημαντική αύξηση των προσωπικών ανάπτυξης ευρωζωνικών ασύρματων δικτύων σε αγορές με μικρή μέχρι σημαντικά διαδραστική.

Β Ισοδύναμοι με τις υπηρεσίες που προσφέρονται μέσω χαλκού ή οπτικών της.

Β Εγγυημένη ελάχιστη απόδοση.

Β Σημαντικά επίπεδα ποιότητας ροής για φωνή, video και διδακτικά.

2.4 Πρώτα συμπεράσματα και σύγκριση του 802.16 με άλλες τεχνολογίες

Σύμφωνα με τα πρότυπα της IEEE, το WiMAX χαίνεται να συμπληρώνει το WiFi, με την επέκταση της παροχής κάλυψης σε μια μεγαλύτερη γεωγραφική περιοχή. Η τεχνολογία WiFi σχεδιάστηκε και βασισταται στη για τοπικά δίκτυα (LAN), ενώ το WiMAX χαίνεται να είναι καταλληλότερο για εφαρμογή σε μη-προσωπικά δίκτυα κάνοντας τα πιο εύκολα και χρήσιμα (MAN). Ετσι, μέχρι σήμερα το WiFi επέκτεισε την πρόσβαση στο Internet σε πολύ μικρό εμβέλεια γήιρο από hotspots, όπου αεροδρόμια, συνεδριακοί χώροι ή εξωδοχεία. Άντιθετα, το WiMAX χαίνεται να είναι σε θέση να κάνει το ίδιο σε εμβέλεια ολόκληρης πόλης, Ακόμα, το WiMAX θα είναι μείωσε την δόση που παρέχοντας η ISP.

Το WiMAX θα χρησιμοποιείται για την παροχή υπηρεσιών ευρωζωνικής πρόσβασης στο Internet σε μικρός χρήστες με αξιόπιστο ιδιαίτερα εύκολο στην εγκατάσταση. Με τον ιδίο τρόπο που σήμερα εγκαθιδρύεται και που υπολογιστή του μαρτλά δικτύωσης WiFi, εμπλοκά θα εγκαθίστα μια χάρτα WiMAX η οποία θα του επιτρέπει να χρησιμοποιήσει από τον οικιακό του χώρο (και όχι μόνο) τις ασήμαντες υπηρεσίες που παρέχοντας ο ISP.

Αναλογικοί στο γεγονός ότι η σύγχρονη εποχή τα ασήμαντα δίκτυα έχουν γίνει απαραίτητα στην περιθεωρητικά μας, γίνεται σαφές ότι το WiMAX και το WiFi είναι συμπληρωματικές τεχνολογίες και θα συνεχίσουν να συνεργάζονται στον κοινό μέλλον. Συγκεκριμένα το WiMAX δεν σχεδιάζεται με την παροχή χρήσης αμέσως να αντικαταστήσει το WiFi. Η επιλογή διαθεσιμότητα των ενσωματωμένων προτύπων 802.11b/g/a σε χορηγείς συσκευών, πληροφορικής συσκευών, το laptop, παρέχει μια συχνότητα αυξήμενη βάση για τους χρήστες του WiFi. Το WiMAX Forum προσδοκά ότι θα υπάρξουν τρία στάδια μέχρι την ενισχύσεις κατάληκτον εξοπλισμού στις περισυστήματες ασήμαντες συσκευές και θα ολοκληρωθούνε μέχρι το τέλος του 2007. Ετσι αναμένεται ότι για ακόμα λίγο χρόνο θα συνεργάζονται οι διάφορες τεχνολογίες που χρησιμοποιούνται σήμερα όπως WiFi / WiMAX ή πιο πολύπλοκα WiFi / WiMAX / Cellular.

Δεδομένου τω προτύπων WiMAX αναβάσεις και συνεχίζοντας να κερδίζοντας την αποδοχή όλο και πιο περισσότερων χρηστών και να οδηγούν σε συνεχιζόμενες μειώσεις το χώρο των chipsets, αρχίζουν να ενσωματώνονται και να υπαγορεύονται σε πιο πολύπλοκες συσκευές. Έτσι το WiMAX αρχίζει να εξελίσσεται από τα στενά όρια ενός MAN δικτύου και να εξαπλώνεται μέσω
όλο και περισσότερων hotspots σε μεγάλες εκτάσεις εξυπηρετώντας διάφορες κατηγορίες χρηστών. Αυτό σημαίνει ότι οι χρήστες WiMAX σε μερικά χρόνια θα είναι σε θέση όχι μόνο να έχουν πρόσβαση σε WiFi hotspots από μια καφετερία αλλά να μπορούν επίσης να έχουν κινητή πρόσβαση μέσω WiMAX σε μια πιο ευρεία περιοχή.

Εντούτοις, άλλα πρότυπα τεχνολογίας PAN, όπως το Bluetooth και το Ultra wideband που προσφέρουν τις υπηρεσίες τους σε δίκτυα μικρής κάλυψης, θα αναπτυχθούν και θα ενσωματώσουν chipsets που θα τους επιτρέπουν να μεταδίδουν δεδομένα με την ίδια ευκολία, αλλά όχι και με την ταχύτητα που μεταδίδουν τα ασύρματα κυψελωτά δίκτυα και τα νέα WiMAX δίκτυα.

Τα νέα πρότυπα WiMAX αποτελούν ένα μέρος του πολύ φωτεινού ορίζοντα του ευρύζωνου ασύρματου μέλλοντος όπου η εισβολή στις νέες συνθήκες και η ταχύτητα παίζουν σημαντικό ρόλο. Όμως πέρα από το βασικό αντίπαλο του WiMAX, το WiFi, υπάρχουν και τεχνολογίες που εξυπηρετούν άλλες ανάγκες ασύρματης μετάδοσης. Κάποιες από αυτές παρουσιάζονται στον παρακάτω πίνακα συγκρίνοντας όπως ταχύτητα μετάδοσης, περιοχή κάλυψης, συχνότητας λειτουργίας, διαθεσιμότητα και εταιρείες που παρέχουν αυτές τις τεχνολογίες.

Μελετώντας τον πίνακα αυτόν βλέπουμε ότι η τεχνολογία που αναμένεται να υπερισχύσει έναντι των εναλλακτικών είναι το WiMAX, μιας και παρέχει πιο υψηλές ρυθμός μετάδοσης και έχει αρκετά μεγαλύτερη εμβέλεια. Στις μέρες μας όμως, το πρότυπο ασύρματης δικτύωσης που είναι ευρέως διαδεδομένο είναι το IEEE 802.11.

<table>
<thead>
<tr>
<th>Τεχνολογία</th>
<th>Συχνότητα (GHz)</th>
<th>Συχνότητα λειτουργίας</th>
<th>Ωμότητα</th>
<th>Υποστήριξη</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluetooth</td>
<td>1 Mbps</td>
<td>2.4 GHz</td>
<td>802.16</td>
<td>Nokia, IBM, Intel, Toshiba, Motorola</td>
</tr>
<tr>
<td>HomeRF</td>
<td>2 Mbps</td>
<td>2.4 GHz</td>
<td>802.16</td>
<td>Proxim, Intel, HP, 3COM, Motorola</td>
</tr>
<tr>
<td>HiperLAN Type 1</td>
<td>24 Mbps</td>
<td>5 GHz</td>
<td>802.16</td>
<td>ETSI, Proxim, HP, IBM, Xircom, Nokia</td>
</tr>
<tr>
<td>HiperLAN Type 2</td>
<td>54 Mbps</td>
<td><150m</td>
<td>802.16</td>
<td>ETSI, Proxim, HP, IBM, Xircom, Nokia</td>
</tr>
</tbody>
</table>

IEEE 802.11

<table>
<thead>
<tr>
<th>Όνομα</th>
<th>Συχνότητα (GHz)</th>
<th>Ωμότητα</th>
<th>Υποστήριξη</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.11</td>
<td>2 Mbps</td>
<td>2.4 GHz</td>
<td>Cisco, Lucent, 3Com, Apple, Nokia, Compaq</td>
</tr>
<tr>
<td>802.11b</td>
<td>11 Mbps</td>
<td>2.4 GHz</td>
<td>Cisco, Lucent, 3Com, Apple, Nokia, Compaq</td>
</tr>
<tr>
<td>802.11a</td>
<td>54 Mbps</td>
<td>2.4 GHz</td>
<td>Cisco, Lucent, 3Com, Apple, Nokia, Compaq</td>
</tr>
<tr>
<td>802.11g</td>
<td>54 Mbps</td>
<td>2.4 GHz</td>
<td>Cisco, Lucent, 3Com, Apple, Nokia, Compaq</td>
</tr>
<tr>
<td>Wi-Max</td>
<td>70 Mbps</td>
<td>3.11 GHz</td>
<td>RedLine</td>
</tr>
</tbody>
</table>
3 Μοντέλο Αναφοράς

Η ΙΕΕΕ με την εισαγωγή της σειράς προτύπων 802 δίνει βάση στα δύο χαμηλότερα επίπεδα του OSI, στο φυσικό στρώμα (PHY) και στο MAC (Medium Access Control). Ετσι και το 802.16 που αναφέρεται στο WiMAX αναλύει αυτά τα δύο επίπεδα. Οι καινοτομίες που έλαβαν χώρα στα δύο παραπάνω στρώματα σε σχέση με το πρότυπο 802.11 είναι σημαντικές. Κύριας σκοπός των αλλαγών αυτών είναι η δημιουργία ενός νέου προτύπου που θα μπορούσε να χαλάρωσε τα κενά που αφήνει ο προκάτοχός του (IEEE 802.11) και ταυτόχρονα να κάνει πραγματική την ασύρματη ευρυζωνική πρόσβαση.

Στο εικόνα μπορούμε να δούμε το μοντέλο αναφοράς για το πρότυπο 802.16. Βλέπουμε ότι προδιαγράφονται δύο βασικά επίπεδα, το φυσικό (PHY) που είναι υπεύθυνο για την μετάδοση των δεδομένων στον ασύρματο δίκαιο και ότι αυτό απαιτεί (όπως κωδικοποίηση, διαμόρφωση, μετάδοση, λήψη κ.λ.π.) και το επίπεδο ελέγχου πρόσβασης μέσου (MAC), το οποίο υποδιαιρείται σε τρία υποεπίπεδα, το υποεπίπεδο ασφάλειας, το MAC Common Part Sublayer (MAC CPS) και το Service-Specific Convergence Sublayer (CS). Το υποεπίπεδο ασφάλειας είναι υπεύθυνο για την πιστοποίηση, την ασφαλή ανταλλαγή κλειδιών και την κωδικοποίηση. Το MAC CPS είναι αυτό που προσφέρει την κύρια MAC λειτουργικότητα όπως είναι η πρόσβαση του συστήματος, η δέσμευση του απαραίτητου bandwidth, η εγκαθίδρυση μιας σύνδεσης και η συντήρησή της. Τέλος το ακόλουθο επίπεδο, το CS, είναι υπεύθυνο για την επικοινωνία του συστήματος με άλλα συστήματα και πρωτόκολλα, δηλαδή έχει ουσιαστικά τον ρόλο του «μεταφραστή».
4 Φυσικό Επίπεδο (PHY)

Το φυσικό επίπεδο του 802.16 είναι σχεδιασμένο έτσι ώστε να μπορεί να υποστηρίζει διαφορετικές τεχνολογίες και τύπους μετάδοσης, χωρίς να επηρεάζονται τα υψηλότερα από αυτό επίπεδα. Όπως αναφέρθηκε και προηγουμένως, το WiMAX λειτουργεί τόσο στην αδειοδοτούμενη περιοχή συχνοτήτων από 10-66GHz όσο και περιοχές κάτω των 11 GHz, αδειοδοτούμενες (όπως 3GHz) αλλά και ελεύθερες (όπως 2,4GHz και 5GHz). Αυτό δίνει το πλαίσιο που η διαλειτουργικότητα του συστήματος WiMAX είναι ιδιαίτερα διεξαγωγής. Οι εξής τυποί μετάδοσης μπορούν να υποστηρίζονται από το φυσικό επίπεδο:

- WirelessMAN-SC
- WirelessMAN-SCa
- WirelessMAN-OFDM
- WirelessMAN-OFDMA
- WirelessHUMAN

Διαφορετικές ιδιαιτερότητες και κύρια χαρακτηριστικά των τυπών μετάδοσης:

<table>
<thead>
<tr>
<th>Υλοποίηση</th>
<th>Ζώνη Συχνοτήτων</th>
<th>Λειτουργίες</th>
<th>Duplexing</th>
</tr>
</thead>
<tbody>
<tr>
<td>WirelessMAN-SC</td>
<td>10-60GHz</td>
<td>ΑΑΣ, ARQ, STC</td>
<td>TDD, FDD</td>
</tr>
<tr>
<td>WirelessMAN-SCa</td>
<td><11GHz αδειοδοτούμενες</td>
<td>ΑΑΣ, ARQ, STC</td>
<td>TDD, FDD</td>
</tr>
<tr>
<td>WirelessMAN-OFDM</td>
<td><11GHz αδειοδοτούμενες</td>
<td>ΑΑΣ, ARQ, STC</td>
<td>TDD, FDD</td>
</tr>
<tr>
<td>WirelessMAN-OFDMA</td>
<td><11GHz αδειοδοτούμενες</td>
<td>ΑΑΣ, ARQ, STC, Mesh</td>
<td>TDD, FDD</td>
</tr>
<tr>
<td>WirelessHUMAN</td>
<td><11GHz ελεύθερες</td>
<td>ΑΑΣ, ARQ, STC, Mesh Topology</td>
<td>TDD</td>
</tr>
</tbody>
</table>

4.1 WirelessMAN-SC PHY

Το όνομα του επιπέδου αυτού προκύπτει από το Single-Carrier modulation και όπως αναφέρθηκε το φυσικό αυτό επίπεδο λειτουργεί στις ζώνες από 10GHz έως 60GHz. Οι ζώνες αυτές παρέχουν ένα φυσικό περιβάλλον, το οποίο λόγω του μικρού μήκους κύματος, που απαιτεί οπτική επαφή πομπών με δέκτη (Line Of Sight – LOS) και αμελητέο θόρυβο πολλαπλών διαδρομών (multipath interference). Στην ζώνη αυτή, το εύρος των καναλιών είναι συνήθως 25MHz ή 28MHz με καθαρό ρυθμό αποστολής δεδομένων να υπερβαίνει τα 125Mb/s.

Είναι προφανές ότι αυτό το περιβάλλον είναι κατ’ εξοχήν χρήσιμο για πρόσβαση σημείου προς πολλά σημεία (PMP) υποστηρίζοντας εφαρμογές από μικρές έως μεγάλες επιχειρήσεις. Σημαντικό ρόλο σε αυτό παίζει το προφανές ότι η αναφερόμενη αναφορά σε ζώνες μη-ελεύθερες δηλαδή που απαιτούν αδειοδότηση, περιορίζεται κατ΄ εξοχήν. Το επίπεδο αυτό είναι σχεδιασμένο έτσι ώστε να παρέχει ένα πολύ μεγάλο βάθμιο ευέλικτης, με σκοπό να παρέχει την δυνατότητα της βέλτιστης ανάπτυξης και υλοποίησης από τους παρόχους, ανάλογα με τις ακόλουθες ανάγκες και απαιτήσεις αναφορικά με τον σχεδιασμό των κυψελών, του κόστους, των ασύρματων δυνατοτήτων, των υπηρεσιών και της χωρητικότητας.
Για λόγους ευλύκτης χρήσης του φάσματος, υποστηρίζονται τόσο FDD όσο και TDD παραμετροποιήσεις. Στην περίπτωση όπου χρησιμοποιείται FDD υποστηρίζεται full-duplex επικοινωνία με τους σταθμούς βάσης αλλά και half-duplex1. Κατά οίκος χρησιμοποιούν φορμά μετάδοσης με μικτές. Η υποδομή της πολύπλεγμης επίπεδο υποστηρίζεται προσαρμογίζομενες τεχνικές όπως αναφέρον τις παραμέτρους μετάδοσης, όπως τον τύπο της διαμόρφωσης και τον τύπο της κωδικοποίησης. Αυτές μπορούν να ρυθμίσουν ξεχωριστά για κάθε σταθμό συνδρομητή (SS), πλάισιο προς πλάισιο αναλόγως με τις συνθήκες και την ποιότητα της ζεύξης την κάθε χρονική στιγμή.

Το κομμάτι της άνω ζεύξης δηλαδή της επικοινωνίας του συνδρομητή με τον σταθμό βάσης είναι βασισμένο σε ένα συνδυασμό TDMA και DAMA. Συγκεκριμένα, το κανάλι της άνω ζεύξης είναι χωρισμένο σε ένα αριθμό από χρονοθυρίδες. Ένας αριθμός από αυτές, που χρησιμοποιούνται αποτελεστικά για λειτουργίας του διπλώματος, ελέγχονται από το MAC επίπαδο στον σταθμό βάσης μπορεί να αλλάξουν στο πέρασμα του χρόνου για μέγιστη απόδοση.

Η κάτω ζεύξη χρησιμοποιεί TDM με την πληροφορία που προσφέρεται για κάθε σταθμό βάσης πολυπλεγμένη σε μία και μοναδική ροή δεδομένων που λαμβάνεται από όλους τους σταθμούς βάσης του ιδίου τομέα ταυτόχρονα.

Το κομμάτι του φυσικού επιπέδου που είναι υπολόγισμα για την κάτω ζεύξη, περιλαμβάνει και ένα υποπετάλιο σήμα συγκλισμένης μετάδοσης (Transmission Convergence - TS) το οποίο εκτιμά έναν δείκτη στην αρχή των MAC PDUs2, δηλαδή των πακέτων που προέρχονται από το ανώτερο επίπεδο, ώστε να είναι εύκολα αναγνωρίσιμα από τον δείκτη. Τα δεδομένα που έρχονται από το επίπεδο αυτό κωδικοποιούνται με randomization, ωστε με FEC και τέλος αντιστοιχούν σε μία QPSK, 16-QAM ή 64-QAM διαμόρφωση.

Στην άνω ζεύξη χρησιμοποιείται σύστημα μετάδοσης TDMA με μικτές. Κάθε ρητή είναι σχεδιασμένη ώστε να μεταφέρει MAC PDUs μεταβλητού μήκους. Ο πομπός κωδικοποιεί τα δεδομένα με βάση της ίδιας διαδικασίας που γίνεται και για την ζεύξη καθόδου.

1 full-duplex είναι η ταυτόχρονη, αμφιδρομήτης επικοινωνία μεταξύ πομπών (BS) και δέκτης, ενώ half-duplex είναι η επικοινωνία όπου, είναι μια αμφιδρομήτης όχι ταυτόχρονη. Ο σταθμός δεν μπορεί να στέλνει και να λαμβάνει ταυτόχρονα.

2 Ο ορισμός του PDU σύμφωνα με ATIS Committee T1A1 είναι ο εξής: 1. Πληροφορία που μεταφέρεται ως μονάδα ανάμεσα στις αντίγραφες ενός διπλώματος και μπορεί να περιέχει πληροφορία ελέγχου, πληροφορία διαστημοποίησης ή δεδομένων. 2. Σε συστήματα με στρώματα, ένα PDU που είναι προεξεργασμένο σε ένα πρωτοκόλλο ή ένα στρώμα (έπειδο) και αποτελείται από πληροφορία ελέγχου του πρωτοκόλλου ή και δεδομένα χρήστη κατοικία του επιπέδου.
ΔΙΚΤΥΑ ΔΕΔΟΜΕΝΩΝ WIMAX – IEEE 802.16

Άνω ζεύξη

Το φυσικό αυτό επίπεδο, λειτουργεί, όπως ήδη αναφέρθηκε, με ενθυλάκωση των δεδομένων σε πλαίσια. Μίας σε κάθε πλαίσιο υπάρχει ένα υποπλαίσιο για την ζεύξη καθόδου και ένα για ζεύξη ανόδου. Το υποπλαίσιο της καθόδου ξεκινά με πληροφορία απαραίτητη για τον συγχρονισμό και τον έλεγχο του πλαίσιου από τον δέκτη. Στην περίπτωση όπου χρησιμοποιείται TDD, το υποπλαίσιο αυτό προηγείται του αντίστοιχου της ανόδου. Στην περίπτωση όπου χρησιμοποιείται FDD αυτά συμβαίνουν ταυτόχρονα.

<table>
<thead>
<tr>
<th>Καναλικό πλαίσιο (MHz)</th>
<th>Σύμβολο στοιχείο (MBd)</th>
<th>Βίδα αποστολής (Mb/s) QPSK</th>
<th>Βίδα αποστολής (Mb/s) 16-QAM</th>
<th>Βίδα αποστολής (Mb/s) 64-QAM</th>
<th>Ευθείας Φωνητικής (ms) Αριθμός PSs/frame</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>20</td>
<td>40</td>
<td>80</td>
<td>120</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>22.4</td>
<td>44.8</td>
<td>89.6</td>
<td>134.4</td>
<td>1</td>
</tr>
</tbody>
</table>

4.2 WirelessMAN-SCa PHY

Το WirelessMAN-SCa PHY είναι βασισμένο στην τεχνολογία single-carrier access και σχεδιασμένο για NLOS λειτουργία χρησιμοποιώντας φάσμα κάτω από τα 11GHz. Αυτό σημαίνει ότι μπορεί να χρησιμοποιηθεί τόσο σε δεσμευμένες ζώνες συχνοτήτων, όσο και σε ελεύθερες. Κύρια χαρακτηριστικά του είναι:

β) Λειτουργία TDD ή FDD

γ) Χρησιμοποίηση TDMA για την ζεύξη ανόδου

δ) TDM ή TDMA για την ζεύξη καθόδου

ε) Block-adaptive διαμόρφωση και FEC κωδικοποίηση και για την ζεύξη ανόδου και για την ζεύξη καθόδου

ζ) Βελτιωμένη πρόβλεψη και εξοφρέτηση καναλιού για NLOS περιβάλλοντα καθώς και για περιβάλλοντα όπου η διστάσιμη καθυστέρηση διάδοσης είναι αυξημένη

η) Concatenated FEC με Read-Solomon και TCM διαμόρφωση.
BTC και CTC FEC επιλογές
Μη χρησιμοποίηση FEC όταν χρησιμοποιείται ARQ για έλεγχο λαθών. Εξαίρεση αποτελούν τα FCH.
STC
Robust modes για λειτουργία με χαμηλό CINR
ΑΑΣ (προαιρετικά)
Έλεγχος ισχύος

Επίσης το WirelessMAN-SCa PHY υποστηρίζει τις ακόλουθες διαμορφώσεις:
Spread BPSK
BPSK
QPSK
16-QAM
64-QAM
256-QAM (προαιρετικά)

4.3 WirelessMAN-OFDM PHY
Το WirelessMAN-OFDM PHY είναι σχεδιασμένο για περιβάλλοντα NLOS και για συχνότητες κάτω των 11GHz και χρησιμοποιεί, όπως αναφέρεται και στο ονόμα του OFDM διαμόρφωσης. Μπορεί να χρησιμοποιηθεί τόσο σε αδειοδοτούμενες συχνότητες όσο και σε ελεύθερες.
Το OFDM (Orthogonal Frequency Division Multiplexing) χρησιμοποιεί πολλαπλά σήματα μεταφοράς σε διαφορετικές συχνότητες, στέλνοντας μερικά από τα bits σε κάθε κανάλι. Αυτό είναι παρόμοιο και με το FDM, μόνο που σε αυτή την περίπτωση όλα τα υποκανάλια λαμβάνουν δεδομένα από μία πηγή.
Ας υποθέσουμε ότι έχουμε μία ροή δεδομένων που λειτουργεί σε \(R \) bps και εύρος φάσματος (bandwidth) \(Nf_0 \), επεκτεντωμένο στο \(f_0 \). Μπορούμε να χρησιμοποιήσουμε όλο το εύρος για να στείλουμε την ροή δεδομένων, οπότε η διάρκεια κάθε bit θα ήταν \(1/R \). Η εναλλακτική λύση είναι να χωρίσουμε το stream σε \(N \) substreams, χρησιμοποιώντας έναν μετατροπέα από σειριακό σε παράλληλο. Κάθε substream έχει data rate \(R/N \) bps και μεταδίδεται σε ξεχωριστή υπογραμμή, με απόσταση ανάμεσα σε γειτονικές γραμμές μετάδοσης του \(\Delta f \). Τώρα η διάρκεια κάθε bit είναι \(N/R \).

Σε ένα κλασικό σύστημα παράλληλης μετάδοσης δεδομένων το συνολικά διαθέσιμο εύρος συχνοτήτων διαιρείται σε \(N \) µη επικαλυπτόμενα υποκανάλια συχνοτήτων. Κάθε υποκανάλι διαμορφώνεται και από διαφορετικό σύμβολο και ακολούθως τα \(N \) υποκανάλια πολυπλέκονται στο πεδίο των συχνοτήτων. Η ιδέα που εισήγαγε το OFDM ήταν πρωτοποριακή μιας και οδηγεί στην εξοικονόμηση φάσματος. Πιο συγκεκριμένα, έκανε λόγο για χρήση επικαλυπτόμενων υποκαναλίων, που χαρακτηρίζονται από την κοινή ιδιότητα της μεταξύ τους ορθογώνιότητας, γεγονός που οδηγεί στην αποκατάσταση της ηλεκτρονικής, της αντιμετώπιση θορύβου και εξασθένησης σήματος λόγω πολυδιόδευσης (multipath fading) καθώς και την πλήρη αξιοποίηση του διαθέσιμου φάσματος.

Στο επόμενο σχήμα βλέπεται πώς επιτυγχάνεται αυτό. Φαίνεται καθαρά η διαφορά μεταξύ των συμβατικών τεχνικών με μη επικαλυπτόμενα υποκανάλια (a) και του OFDM (b). Κατά αυτό τον τρόπο επιτυγχάνεται εξοικονόμηση εύρους φάσματος που αγγίζει κατά περίπτωση ακόμα και το 50%. Βέβαια όταν προσανατρίζουμε ομαλά να εξασφαλίσουμε τον όσο τη δυνατόν μικρότερο παρεμβολή μεταξύ των υποχρεώσεων. [ΠΠ1 & Παράρτημα]
Άλλα χαρακτηριστικά του φυσικού επιπέδου είναι τα εξής:

- AAS
- ARQ
- Mesh Topology
- STC (προαιρετικά)
- Concatenated FEC με Read-Solomon
- BTC, CTC (προαιρετικά)
- Transmission Convergence Layer ίδιο με τον WirelessMAN-SC (προαιρετικά)
- Έλεγχος ισχύος
- Μεταβλητό εύρος καναλιού (ελάχιστο εύρος 1.25MHz)

Η κωδικοποίηση του καναλιού γίνεται σε τρία βήματα: randomizing, FEC και τέλος interleaving [Παράρτημα]. Το επόμενο βήμα είναι η διαμόρφωση των δεδομένων. Υποστηρίζομενες μορφές διαμόρφωσης είναι οι εξής:

- BPSK
- Gray-mapped QPSK
- 16-QAM
- 64-QAM (προαιρετική για χρήση σε ελεύθερη ζώνη συχνοτήτων) [Παράρτημα]

Όπως και τα άλλα, έτσι και το WirelessMAN-OFDM μπορεί να χρησιμοποιεί είτε FDD είτε TDD. Επίσης αντίστοιχα, σε ελεύθερες ζώνες συχνοτήτων χρησιμοποιείται μόνο το TDD. Στο αναφέρονται ενδεικτικά οι ταχύτητες που μπορούν να επιτευχθούν με το WirelessMAN-OFDM PHY.
4.4 WirelessMAN-OFDMA PHY

Το WirelessMAN-OFDMA PHY είναι παρόμοιο με το WirelessMAN-OFDM PHY με κύρια διαφορά ότι χρησιμοποιεί μία εξελιγμένη μορφή του OFDM, το OFDMA το οποίο «ομαδοποιεί» τις ψήφους σε υποκανάλια. Έτσι ένας χρήστης μπορεί να εκπέμπει χρησιμοποιώντας ένα μέρος των υποκαναλιών, ή όλα ταυτόχρονα. Παράλληλα μειώνεται το ελάχιστο εύρος του καναλιού από 1.25MHz σε 1MHz. Άλλη σημαντική διαφορά είναι η μη υποστήριξη τοπολογίας mesh.

4.5 WirelessMAN-HUMAN PHY

5 Επίπεδο Ελέγχου Πρόσβασης Μέσου (MAC)

5.1 Γενικά

Στην ομάδα των υποεπιπέδων που συμπεριλαμβάνει το MAC υλοποιούνται λειτουργίες που έχουν να κάνουν με υπηρεσίες που παρέχονται σε όλους τους χρήστες του δικτύου. Αυτές περιλαμβάνουν:

Β Μετάδοση, συγκέντρωση των δεδομένων σε ένα πλαίσιο (frame) που να περιλαμβάνει πεδία διεύθυνσης και ανίχνευσης λαθών.

Β Αύξηση αποσυναρμολόγησης του πλαισίου και αναγνώριση της διεύθυνσης και της ανίχνευσης λαθών.

Β Έλεγχος της πρόσβασης στο μέσο ασύρματης διάδοσης.

Τις λειτουργίες αυτές της ομάδας που συμπεριλαμβάνει το MAC υλοποιούνται λειτουργίες που έχουν να κάνουν με υπηρεσίες που παρέχονται σε όλους τους χρήστες του δικτύου. Αυτές περιλαμβάνουν:

§ Μετάδοση, συγκέντρωση των δεδομένων σε ένα πλαίσιο (frame) που να περιλαμβάνει πεδία διεύθυνσης και ανίχνευσης λαθών.

§ Λήψη, αποσυναρμολόγηση του πλαισίου και αναγνώριση της διεύθυνσης και της ανίχνευσης λαθών.

§ Έλεγχος της πρόσβασης στο μέσο ασύρματης διάδοσης.

Ωστόσο, το πρωτόκολλο μεταξύ του σταθμού βάσης και του σταθμού του χρήστη μπορεί να αρχίσει τη μετάδοση στο κανάλι. Επιπλέον, το πρωτόκολλο MAC πρέπει να έχει τη δυνατότητα να τροποποιεί την χωρητικότητα του καναλιού με σκοπό να μπορεί να εξυπηρετήσει όλες τις απαιτήσεις που έχουν τα ανώτερα επίπεδα, όπως για παράδειγμα το ATM, που χρειάζεται συνεχειακά επίπεδα υπηρεσία.

Όσον αφορά την επικοινωνία μεταξύ του σταθμού βάσης και του σταθμού του χρήστη, το πρωτόκολλο πρέπει να είναι σχετικά απλό. Στην αντίθετη κατεύθυνση όμως, επειδή υπάρχουν πολλοί συνδρομητικοί σταθμοί που ανταγωνίζονται για πρόσβαση καταλήγουμε σε ένα πιο σύνθετο MAC πρωτόκολλο.

Το ανώτερο υποεπίπεδο του MAC είναι το υποσύστημα σύγκλισης που παρέχει λειτουργίες επί των ανώτερων επίπεδων, και μπορεί να κάνει τα ακόλουθα:

Β Να ενσωματώνει την PDU ενθυλάκωσης (framing) των ανώτερων επιπέδων στα τοπικά 802.16 MAC/PHY πλαίσια.

Β Να χαρτογραφεί τις διευθύνσεις των ανώτερων επιπέδων με 802.16 διευθύνσεις.

Β Να μεταφράζει τις παραμέτρους ποιότητας υπηρεσίας των ανώτερων επιπέδων σε 802.16 MAC τηπολογία.

Β Να προσαρμόζει τις χορηγουμένες εξαρτήσεις της χίνησης των ανώτερων επιπέδων στην αντίστοιχη MAC υπηρεσία.
5.2 Ασφάλεια (Security Sublayer)

5.2.1 Γενικά

Όταν η IEEE και το WiMAX forum συνειδητοποίησαν ότι η ασφάλεια ήταν σε πολύ χρήσιμο σημείο σε συνδυασμό με την εξέλιξη της ασύμμετρης ευρυζωνικής αποφάσισης, τότε έπρεπε να καθοριστεί ένα ισχυρό περιβάλλον ασφαλείας.

Ένα χαρακτηριστικό που επηρεάζει άμεσα τη διάδοση ενός δικτύου και την εφαρμογή του είναι η ασφάλεια. Μεταφέροντας αυτό θα δυνατού επιτευγμένο δίκτυο σε σχέση με τα άλλα του ήδη χρησιμοποιούμενα, γεγονός που ωθεί τους επιβιβασθήκει να γίνει ανταγωνιστικότερο και να υπερισχύσει έναντι των άλλων.

Η ομάδα εργασίας του IEEE 802.16 χρησιμοποιεί ένα ήδη υπάρχον πρότυπο, το DOCSIS το οποίο ήταν σχεδιασμένο για να λύνει προβλήματα στα last-mile κοιμάτα του καλωδιακού δικτύου. Όμως επειδή το καλωδιακό υποδομή είναι ευαίσθητη από το 802.16 είναι ασάφη, το 802.16 είναι ευάλωτο σε διαφορετικά είδη επιθέσεων. Τυπικές απειλές για τη σύστημα δίκτυων είναι:

β) Κακοβολίες οντότητες μπορούν να αποτύχουν πρόβαση από συστήματα δίκτυων εκτός εάν οι συνθήκες δεν είναι προστατευμένες κατάλληλα. Οι εισβολείς αυτοί μπορούν να προσπαθήσουν να καθοδήγησαν το firewall που υπάρχουν στο δίκτυο,

β) Οποιαδήποτε μη κωδικοποιημένη πληροφορία μεταφέρεται στο κανάλι, μπορεί να ευαίσθητο από οποιαδήποτε, συντονίζοντας απλά τον δεκτή του

β) Επιθέσεις «Άρρυθμης Εξυπηρέτησης (DoS) είναι πολύ πιο εύκολο να συντονιστούν»

β) Η ταυτότητα ενός χρήστη του δικτύου μπορεί να ευαίσθητοι και στην απάντηση, κάποιος να χρησιμοποιεί αυτή την ταυτότητα για να εμφανίζεται ως πιστοποιημένος χρήστης.

Προφανώς υπάρχουν πολλές ακόμη μορφές απειλών όπως η αποστολή κακοβολίου κώδικα στους χρήστες, ίδια κ.λ.π.[WS1].

5.2.2 Υποσειρόδικο Ασφάλειας

Όπως αναφέρθηκε και στην εισαγωγή, η ομάδα εργασίας της IEEE χρησιμοποιεί ένα ήδη υπάρχον πρότυπο το DOCSIS. Ο λόγος ήταν ότι έτσι θα ελαφρυνθοῦσαν το κόστος παραγωγής των chips για την συγκεκριμένη λειτουργία αφού ήταν ήδη αρκετή παραγωγή για τα καλωδιακά modems. Το πρότυπο αυτό εξαλείχθηκε για να ταχεύσει καλύτερα στις ανάγκες των ασύμμετρων δικτύων. Οι κώδικες αλλαγής του αντικαταστάταν στη συρραμάτω και αυτός διαδράμασε μικρές παραμέτρους. Αυτός περιλαμβάνει το εύρος του καναλίου (τυπικά 40MHz σε αντίθεση με τα 6/8MHz για τα καλωδιακά), προγραμματισμένη κωδικοποίηση Reed-Solomon, μειωμένο SNR για διπλές BER και υποστήριξη υψηλότερων ρυθμών συμβόλων και γραμμή διαμόρφωσης.

Αυτό όμως δεν είναι αρκετό για την προστασία της ασάφης ζεύξης στο 802.16. Οι σταθμοί συνεργασίας (SS) χρησιμοποιούν το PKM πρωτόκολλο για να πάρουν εξουσιοδότηση από τον σταθμό βάσης, καθώς και κωδικά πιστοποίησης. Αυτή η διαδικασία επαναλαμβάνεται ταυτόχρονα για ανανέωση των κωδικών. Το πρωτόκολλο διαχείρισης των κωδικών χρησιμοποιεί τον RSA αλγόριθμο χρυστεγγράφησης δημοσίου κωδικού, και αλγόριθμος ισχυρής χρυστεγγράφησης για την ανταλλαγή των κωδικών μεταξύ του σταθμού βάσης και του σταθμού συνεργασίας.

22
Υπάρχουν δύο είδη πιστοποιητικών, τα πιστοποιητικά κατακεκυμνησμένη και τα πιστοποιητικά του σταθμού συνδρομητή. Ο κάθε σταθμός συνδρομητή έχει ένα μοναδικού πιστοποιητικό. Από την άλλη τα πιστοποιητικά για τους σταθμούς βάσης δεν είναι ορισμένα και έτσι δεν είναι εφικτή μία αμοιβαία πιστοποίηση. Το δίκτυο (δηλαδή οι σταθμοί βάσης) μπορούν να πιστοποιήσουν έναν χρήστη, δεν μπορεί όμως να συμβεί το αντίθετο. Αυτό μπορεί να συνεχίσει σε επόμενες τύπου συροφ στον χρήστη της συσκευής του χρήστη.

Αν ο σταθμός συνδρομητή πεί στον σταθμό βάσης τότε, εάν ο σταθμός βάσης είναι ρθυμομένος να επιτρέπει μια ασφαλή συνδέσμος, η διαδικασία πιστοποίησης και ανταλλαγής κλειδιών προσπερνάται, και ο χρήστης εξουσιοδοτείται να χρησιμοποιήσει το δίκτυο. Σε αντίθετη περίπτωση ο σταθμός βάσης απλά απορρίπτει τον χρήστη. Η κρυπτογράφηση γίνεται πάντα στο υφέλιμο φορτίο του MAC PDU ενώ η επικεφαλίδα δεν κρυπτογραφείται. Το μηνύματα του πρωτοκόλλου PKM πιστοποιούνται βάση του HMAC πρωτοκόλλου με SHA-1.

Οι συσχετισμοί ασφαλείας (SAs) διατηρούν το επίπεδο ασφαλείας που είναι συγκεκριμένο με μία σύνδεση και την κρυπτογράφηση, το 802.16 χρησιμοποιεί 56bit DES σε μία προσσθέντα προστασία των μεταδότων δεδομένων που έχουν μοντελοποιηθεί βάση της προδιαγραφής DOCSIS. Ο αλγόριθμος DES είναι ένας σχετικά ασθενής αλγόριθμος και το τυπικό 56bit DES κλειδί μπορεί να απλά σε μικρό σχετικά χρονικό διάστημα με χρήση διαδεδομένου hardware.

Το νέο πρότυπο 802.16e διευθετεί ορισμένα από αυτά τα ζητήματα. Αντί να χρησιμοποιεί τον DES, χρησιμοποιεί τον πολύ πιο ισχυρό αλγόριθμο κρυπτογράφησης του AES (Advanced Encryption Algorithm). Επίσης το 802.16e παρέχει το πρωτόκολλο EAP (Extensible Authentication Protocol) για την πιστοποίηση των συσκευών που είναι στο δίκτυο. Το EAP επιτρέπει να χρησιμοποιηθεί σε δύο οποιοδήποτε μηχανισμός πιστοποίησης, συμπεριλαμβανομένων και μηχανημάτων για αμοιβαία πιστοποίηση.[WMO]

5.3 MAC Common Part Sublayer (MAC CPS)

5.3.1 Γενικά

Το πρότυπο της IEEE, 802.16 παρέχει το ιδίο Media Access Control (MAC) επίπεδο για όλα τα φυσικά επίπεδα και τις τεχνικές. Κύριος σκοπός του επιπέδου MAC είναι η επίπεδη βέλτιστη απόδοση μέσω της σωστής παροχής πόρων.

Το πρότυπο όπως καθορίστηκε υποστηρίζει λειτουργίες Time Division Duplex (TDD) and Frequency Division Duplex (FDD) και προβλέπει μια μέθοδο Half Duplex FDD (HD-FDD) και καθορισμένο ντουρμπλέξ χρονικό τμήματος υποστηρίζει και (TDD)

Το υποστήριζε MAC εκτελεί κυρίως τις εξής λειτουργίες [ΠΠ1]:

1. **Σύνδεση των ταμπλωτών στο δίκτυο**

2. **Διευθυνσιοδότηση** - Εισαγωγή MAC διευθύνσεων πηγής και προορισμού σε κάθε πλαίσιο που μεταδίδεται

3. **Οριοθέτηση των πλαίσιων (κατά την αποστολή)**, δηλ. παρεμβάλλοντας πληροφορία (π.χ. μερικά πρόσθετα κυμάτια) μέσα ή μεταξύ των πλαίσιων που στέλνονται έτσι ώστε ο δέκτης να είναι σε θέση να αναγνωρίσει την αρχή και το τέλος των πλαίσιων

1 Ένα παράδεγμα τέτοιας επίδρασης είναι όταν ένας επιβολέας πέφτει την Alice ώστε αυτός είναι ο Bob και πέφτει τον Bob ώστε είναι η Alice. Με αυτόν τον τρόπο αποτελεί πρόσβαση και προς τις δύο κατευθύνσεις χωρίς καμία απόλυτη προστασία. Αυτή η ασίστατη υποστήριξη για περίπτωσης κρυπτογραφημένων μηχανημάτων.
Για 5.3.3 κατατάσσονται management (σχετικά επικεφαλίδα πλαισίο § § §)

ΔΙΚΤΥΑ

να ανιχνεύει μπορεί σήμα να πλαίσιο έλεγχο πλευρά

Ανίχνευση αναγνώριση έλεγχο προχής πουις (QoS)

Δημιουργία ομάδων multicast και multicast συνδέσεων

5.3.2 MAC PDUs

Ένα MAC PDU αποτελείται από 3 κομμάτια, την επικεφαλίδα του MAC πλαισίου, το ωφέλιμο φορτίο του πλαισίου και το CRC που χρησιμοποιείται για ανίχνευση λαθών. Το μέγεθος του πλαισίου έχει μεταβλητό μήκος αφού το μέγεθος του ωφέλιμου φορτίου (payload) εξαρτάται άμεσα από τον τύπο της εφαρμογής του ανωτέρου επιπέδου.

Υπάρχουν δύο ειδών MAC επικεφαλίδες, μία γενική για δεδομένα ή για διαχείριση του MAC επιπέδου και μία που στέλνεται από το σταθμό του συνδυασμένη για αίτηση μεγαλύτερου bandwidth. Επιπλέον επικεφαλίδες μπορούν να τοποθετηθούν αμέσως μετά την κυρίως επικεφαλίδα του MAC και μπορούν να έχουν να κάνουν με λειτουργίες όπως με πληροφορίες σχετικά με την mesh τοπολογία (σαν αυτή υλοποιείται την δεδομένη στιγμή), πληροφορίες γρήγορης ανάρτησης (για το φυσικό επίπεδο), τμηματοποίησης των πακέτων, Grant management (για διαχείριση του bandwidth ανάμεσα στους BS και SS) κ.α. Τα μηνύματα διαχείρισης του MAC CPS επιπέδου που ανταλλάσσονται ανάμεσα στον BS και τον CS κατατάσσονται στις εξής κατηγορίες: broadcasting, αρχικό ranging, βασικές και χώρες. Αυτές οι πληροφορίες τοποθετούνται μέσα στο ωφέλιμο φορτίο του πακέτου. Στο 802.16 υπάρχουν 256 θέσεις διαθέσιμες για αυτά τα μηνύματα και αυτή τη στιγμή χρησιμοποιούνται οι 50.[WMO]

5.3.3 Είσοδος χρήση στο δίκτυο

Για να εισέλθει στο δίκτυο ένας SS πρέπει πρώτα να παράση από τον BS τη βήματα[PH1]:

1. Αναγνώριση ενός καναλιού κάτω ζεύξης και επίπεδη συγχρονισμού με τον BS. Ο SS μπορεί είτε να ανακαλύψει το κανάλι κάτω ζεύξης από τον μήνυμα του, είτε να αρχίσει να αναγνώρισε πιθανά κανάλια στις συχνότητες της ζεύξης καθόδου ώστε θα βρεί ένα έγκυρο σήμα. Αφού βρει το κανάλι της ζεύξης καθόδου πρέπει να συγχρονιστεί και να προσπαθήσει να λάβει τις παραμέτρους για τον έλεγχο του καναλιού ψάχνοντας για τα κατάλληλα πακέτα που στέλνονται από τον BS.
2. Απόκτηση των παραμέτρων εκπομπής: Ο SS ψάχνει για ένα μήνυμα-προσδιοριστή (Channel Descriptor message) για το κανάλι της άνω ξενίας από τον BS, έτσι ώστε να μάθει τις παραμέτρους εκπομπής για ένα ενδεχόμενο κανάλι ξενίας συνόδου.

3. Προσαρμογή των τοπικών παραμέτρων (όπως ισχύς εκπομπής) βάση των ενδεδειγμένων τιμών του BS.

4. Διαπραγμάτευση των βασικών δυνατοτήτων. Ο SS ενημερώνει τον BS για τις βασικές δυνατότητες που υποστηρίζει στέλνοντας ένα κατάλληλο μήνυμα στον BS. Ο BS απαντάει με μία επιβεβαίωση.

5. Εξουσιοδότηση του SS και ανταλλαγή κλειδιών. Ο BS εξετάζει την διαδικασία εξουσιοδότησης του SS ώστε να εισέλθει στο αυτός στο δίκτυο και ανταλλάξει τα κλειδιά ασφαλείας.

6. Εγγραφή του SS. Ο BS στέλνει επιπλέον μηνύματα διαχείρισης και ο SS διαχειρίζεται από τον BS.

7. Εγκαθίδρυση ΙP συνδεσιμότητας. Ο SS λαμβάνει μία IP διεύθυνση από τον BS.

8. Εγκαθίδρυση κινητής ύψους. Ο SS και ο BS πρέπει να έχουν ιδία πληροφορία σχετικά με την ώρα.

9. Αποστολή επιπλέον παραμέτρων. Ο BS στέλνει επιπλέον πληροφορίες παραμετροποίησης στον SS.

Αν για κάποιο λόγο η μηχανή καταστάσεων του δικτύου αποτύχει σε οποιαδήποτε από τις προηγούμενες καταστάσεις επανέρχεται στην αρχική. Όταν η διαδικασία εισαγωγής ολοκληρώθηκε επιτυχώς, ο σταθμός συνδρομητή (SS) δημιουργεί μία ροή υπηρεσιών για να μεταδίδει δεδομένα στον σταθμό βάσης (BS). Ο σταθμός βάσης μπορεί να παρέχει μία ορισμένη εκ των προτέρων ροή υπηρεσιών την οποία πρέπει να επιβεβαιώσει ο SS ή να την αναλάβει μία διαφορετική που θα επιβεβαιώσει ο BS. [OWM]

5.3.4 Μηχανισμοί αίτησης και δέσμευσης πόρων (Bandwidth Request-Bandwidth Allocation)

Το πρότυπο προσδιορίζει διάφορους μηχανισμούς για την πρόσβαση στον BS στο κινούμενο κανάλι συνόδου και για την αίτηση παραχώρησης πόρων (δηλαδή μέρος του διαθέσιμου εύρους ζώνης) σε αυτόν, από τον BS, ώστε να μπορεί να εκπέμψει. Οι μηχανισμοί-κλειδιά της διαδικασίας αυτής είναι ο μηχανισμός αίτησης εύρους ζώνης και η δέσμευση εύρους ζώνης. Οι μηχανισμοί αυτοί υποστηρίζουν διάφορους τύπους ροής υπηρεσιών ώστε να καλύπτονται ένα μεγάλο εύρος εφαρμογών. [PH1]

Σε κάθε αίτηση που κάνει ο σταθμός συνδρομητή για νέα σύνδεση μεταφέρεται ένα μήνυμα BW Request. Αυτό μπορεί να είναι ένα ξεχωριστό, αυτόνομο πακέτο ή μία επιπλέον πληροφορία σε κάποιο άλλο πακέτο. Η αίτηση βασίζεται στον αριθμό των bytes που χρειάζεται να μεταφέρει ο MAC πακέτο (χωρίς να υπολογίζεται η επιπλέον επικαιρότητα του φυσικού επιπέδου). Η αίτηση για το εύρος ζώνης μπορεί να είναι η προσθήκη στο ήδη υπάρχον είτε συνολικά για το εύρος ζώνης που χρειάζεται στην δεδομένη στιγμή. Όταν ο σταθμός βάσης λάβει ένα μήνυμα για αύξηση του εύρους ζώνης, προσθέτει αυτή την ποσότητα στο ήδη υπάρχον και δεσμευμένο εύρος. Αντίστοιχα όταν λάβει μήνυμα που αναφέρει το συνολικό εύρος που απαιτείται αναπροσαρμόζει ανάλογα. Στην περίπτωση όπου το μήνυμα BW Request μεταφέρεται ως
επιτλόσο πληροφορία σε ένα άλλο πακέτο μπορεί να περάσει μόνο αυξητική μορφή αίτησης, ενώ όταν μεταφέρεται ως αυτόνομο πακέτο μπορεί να περάσει οποιοδήποτε από τις δύο μορφές.

Ο σταθμός βάσης παραχωρεί ή δεσμεύει πόρους εφαρμογών μια από τις δύο παραγόντες μεθόδους: GPSS (Grant Per Subscriber Station) και GPC (Grant Per Connection). Στην περίπτωση του GPC ο σταθμός βάσης δεσμεύει εύρος ζώνης για κάθε έξωφορο σύνδεση. Στην περίπτωση του GPSS ο σταθμός βάσης δεσμεύει εύρος ζώνης για κάθε έξωφορο σταθμό συνδρομητη. Σε αυτή την περίπτωση ο σταθμός συνδρομητή είναι υπεύθυνος για την κατανομή του εύρους που του έχει εχθροποιηθεί σε κάθε σύνδεση του. Ο σταθμός συνδρομητή αποφασίζει ποια δεσμεύει θα μεταφέρθηκε πρώτα, λαμβάνοντας υπ’ όψιν τις ανάγκες της εκάστοτε εφαρμογής και των παραμέτρων QoS. Το αυτόν τον λόγο, στην περίπτωση του GPSS απαιτούνται πιο έξυπνα τεχνικά απ’ ό,τι στην μέθοδο GPC. Ο κατασκευαστής μπορεί να επιλέξει σχεδιασμό με βάση το GPC για λόγους απλότητας. Στην περίπτωση όπου χρησιμοποιείται η ζώνη συγκροτήσεων άνω των 11GHz όμως, δηλαδή το WirelessMAN-SC PHY, υποστηρίζεται μόνο η μέθοδος GPSS.

Η διάσκεψη των πόρων από τον BS γίνεται λαμβάνοντας υπ’ όψιν κατά κύριο λόγο τις εξής παραμέτρους:

Β) Το μέγεθος του εύρους ζώνης που απαιτείται από τις συνδέσεις

Β) Τις παραμέτρους QoS για την καθολική και το απαιτούμενο εύρος ζώνης για την εκάστοτε εφαρμογή, όπως αντικατοπτρίζεται στις παραμέτρους της ροής υπηρεσίας

Β) Τους διαθέσιμους πόρους του δικτύου

Ο σταθμός βάσης μπορεί να παραχωρήσει δυνατότητες εκπομπής για πολλές συνδέσεις σε έναν μεμονωμένο σταθμό συνδρομητή, με κάθε μία από αυτές να έχει διαφορετικές παραμέτρους QoS. Επίσης, ο σταθμός βάσης μπορεί να αρχίσει να παραχωρήσει πόρους σε έναν SS για διάφορους λόγους, όπως ότι το εύρος που ζητήθηκε από τον SS δεν είναι διαθέσιμο, όταν η κάθε πολιτική που έλαβε ο BS περιέχει λάθη n.o.x.

5.3.5 Scheduling Services

Οι υπηρεσίες scheduling περιγράφουν τους μηχανισμούς που χρησιμοποιούνται από το MAC για χειρισμό των μεταδόσεων σε μία σύνδεση. Κάθε σύνδεση συσχετίζεται με έναν από αυτούς του μηχανισμούς.

Το 802.16 ορίζει τέσσερα scheduling services που παρέχουν υποστήριξη QoS για ένα μεγάλο εύρος εφαρμογών. Οι ροές που παρέχονται είναι οι εξής: UGS (Unsolicited Grant Service), rTPS (Real-Time Polling Service), nTPS (Non-Real-Time Polling Service) και BE (Best Effort).

5.3.5.1 Unsolicited Grant Service (UGS)

Ο τύπος αυτός υποστηρίζει ροές υπηρεσιών πραγματικού χρόνου που δημιουργούν πακέτα δεδομένων σταθερού μήκους σε συγκεκριμένες χρονικές περιόδους. Λόγω αυτού, τα μηχανήματα του BS για παραχωρήσεις πόρων είναι σταθεροί μήκους σε συγκεκριμένα χρονικά διαστήματα, κάτι που έχει ως αποτέλεσμα να αυξάνεται η επιπλέον επιβάρυνση του συστήματος από τις αιτήσεις του SS. Επίσης εγκατάλειπε όταν τα μηχανήματα παραχωρήσεις πόρων μπορούν να ανταποκριθούν στις ανάγκες της ροής αυτής.

Οι πιο βασικές παραμέτρους που μπορούν να οριστούν είναι ο μέγεθος σταθερού ρυθμού μετάδοσης, η μέγιστη καθολική καθυστέρηση, η μέγιστη ανεκτή διακόμιση καθυστέρησης και η πολιτική αίτησης/μετάδοσης.
5.3.5.2 Real-Time Polling Service (rTPS)

Το rTPS είναι σχεδιασμένο για να υποστηρίζει υπηρεσίες πραγματικού χρόνου που μεταφέρουν δεδομένα με πακέτα μεταβλητού χρόνου όπως βίντεο συμπιεσμένο κατά MPEG. Ο BS υποδέχεται τον SS για τις ανάγκες που έχει, ώστε να διασφαλίζει τους κατάλληλους πόρους. Συγκεκριμένα με το UGS έχει το μειονέκτημα ότι χρησιμοποιεί μεγαλύτερο εύρος του διακόπτου λόγω της σημαντικότητας, αλλά στα θετικά του συνιστάται το ότι το μπορεί να χρησιμοποιηθεί από εφαρμογές που δεν λαμβάνουν/στέλνουν δεδομένα με σταθερό ρυθμό.

Το πρότυπο διευκρινίζει ότι ο BS χρειάζεται να στέλνει ανά τακτά χρονικά διαστήματα ερωτήσεις προς τους SS για τις ανάγκες τους αλλά δεν διευκρινίζεται η συχνότητα.

Οι κύριες παράμετροι σε αυτόν τον τύπο είναι ελάχιστος ρυθμός μετάδοσης, ο μέγιστος σταθερός ρυθμός μετάδοσης, η μέγιστη καθυστέρηση και η πολυτιμή αίτηση/μετάδοση.

5.3.5.3 Non-Real-Time Polling Service (nTPS)

Το nTPS είναι σχεδιασμένο για να χρησιμοποιείται από εφαρμογές που είναι ανεπικίνδυνες σε καθυστερήσεις με δεδομένα μεταβλητού χρόνου, δίνοντας άμεση στον ελάχιστο ρυθμό μετάδοσης, όπως για παράδειγμα μεταφορά δεδομένων με το πρωτόκολλο FTP. Βασικές παράμετροι είναι ο ελάχιστος ρυθμός διακίνησης, ο μέγιστος σταθερός ρυθμός μετάδοσης, η προτεραιότητα και η πολυτιμή αίτηση/μετάδοση.

5.3.5.4 Best Effort (BE) Service

Το BE είναι σχεδιασμένο για εφαρμογές χωρίς απαιτήσεις όσο αναφαίρεται ο ελάχιστος ρυθμός μετάδοσης, την καθυστέρηση κ.λ.π. Παρέχει υπηρεσίες «βέλτιστης προσπάθειας» όπως υποδηλώνει και το όνομά του, κάτι που σημαίνει ότι το επίπεδο των υπηρεσιών που προσφέρονται έχει άμεση σχέση με την κατάσταση του ασύρματου διακόπτου και τα επίπεδα συμφιλίωσης του δικτύου την καθυστέρηση στιγμή.

Βασικές παράμετροι είναι ο μέγιστος σταθερός ρυθμός διακίνησης, η προτεραιότητα και η πολυτιμή αίτηση/μετάδοση.

5.3.6 QoS

Η επίπεδη συμμορφών επιπέδου υπηρεσιών (SLA – Service Level Agreements) με τους πελάτες, υπήρξε πάντοτε μία πρόκληση για τους παρόχους. Το WiMAX παρέχει ένα προετοιμασμένο πακέτο για υποστήριξη ποιότητας υπηρεσιών (QoS), κάτι που βοηθά στο να επιτυχθούν αυτές οι συμμορίες. Το εύρος του καναλικού έχει, διευκρινίζεται για υπηρεσίες που έχουν αυστηρές ανάγκες όσο αναφαίρεται την ταχύτητα μετάδοσης αλλά και την καθυστέρηση, χωρίς να υποβαθμίζει τις υπόλοιπες εφαρμογές ή τους κόμβους ενός δικτύου.

Πλασμοκτίμητα της ύπαρξης QoS στο WiMAX είναι:

- Εξασφάλιση χαμηλής καθυστέρησης για συγκεκριμένες εφαρμογές
- Διαχείριση του διαθέσιμου χώρου
- Βελτιστοποιημένη μετάδοση για συγκεκριμένες εφαρμογές όπως video και φωνής [IQA].

Ο κύριος μηχανισμός που χρησιμοποιεί το 802.16 για την παροχή υπηρεσιών QoS είναι ο συγχρηματοδοτικός κύκλος πακέτων που μεταφέρεται με μία συγκεκριμένη ροή υπηρεσιών. Μία ροή υπηρεσιών είναι μία αμφιδρόμητη ροή πακέτων που παρέχει ένα συγκεκριμένο επίπεδο QoS. Το πρότυπο παραγράφει λεπτομερώς τον μηχανισμό για το πώς θα γίνεται η δέσμευση των πόρων του συστήματος και για το πώς θα στέλνονται το αιτήματα για την δέσμευση αυτών, για κάθε
ξεχωριστή ροή υπηρεσίας (ή αλλιώς scheduling service) όπως παραγράφηκαν προηγουμένως. Περιλαμβάνεται αυτό είναι:

β UGS : Υποστήριξη για υπηρεσίες πραγματικού χρόνου με σταθερό ρυθμό δεδομένων (CBR – Constant Bit Rate) όπως VoIP και εξομοιώση κυκλώματος

β rtPS : Υποστήριξη για υπηρεσίες πραγματικού χρόνου με μεταβλητό ρυθμό δεδομένων (VBR – Variable Bit Rate) όπως streaming audio και video

β nrtPS : Υποστήριξη για υπηρεσίες όχι πραγματικού χρόνου, με αυξημένες απαιτήσεις ως προς τον ρυθμό μετάδοσης όπως υπηρεσίες FTP

β BE : Υποστήριξη για εφαρμογές χωρίς συγκεκριμένες απαιτήσεις ως προς την ποιότητα της παρεχόμενης υπηρεσίας

Κάθε δικτυακή εφαρμογή πρέπει πρώτα να εγγράφεται στο δίκτυο. Το δίκτυο θα την συσχετίσει υστέρα με μία συγκεκριμένη ροή υπηρεσίας δίνοντας της έναν μοναδικό αριθμό SFID (Service Flow ID). Κάθε πακέτο της εφαρμογής πρέπει να χαρακτηρίζεται από αυτόν τον αριθμό ώστε το δίκτυο να μπορεί να παρέχει το ζητούμενο QoS. Όταν η εφαρμογή θέλει να στέλνει πακέτα δεδομένων στο δίκτυο, απαιτείται να δημιουργήσει μία σύνδεση με το δίκτυο η οποία χαρακτηρίζεται από έναν συγκεκριμένο μοναδικό αριθμό CID (Connection ID). Από και υστέρα, κάθε πακέτο που στέλνεται περιέχει τόσο το CID όσο και το SFID.

5.3.6.1 Παροχή QoS (Provision)

Το μοντέλο παροχής υπηρεσιών για ένα WiMAX δίκτυο εμπεριέχει τα επόμενα βήματα:

β Οι πελάτες απευθύνονται στον εκάστοτε πάροχο που είναι υπεύθυνος για την διαχείριση του WiMAX δικτύου και εγγράφονται σε αυτόν

β Όποτε θέλουν να χρησιμοποιήσουν μία δικτυακή υπηρεσία (π.χ. αποστολή ή λήψη δεδομένων) δημιουργούν μία σύνδεση με το δίκτυο.

β Αν οι χρήστες απαιτούν υποστήριξη για ποιότητα υπηρεσιών στις εφαρμογές τους πρέπει να στέλνουν μαζί και το σύνολο των παραμέτρων του QoS με έναν από τους καλλιώθους τρόπους:

- δηλώνοντας συγκεκριμένα όλες τις παραμέτρους
- αναφερόμενες εμμέσως σε ένα προκατασκευασμένο σύνολο παραμέτρων διαλέγοντας ένα Service Class Name
- δηλώνοντας ένα Service Class Name αλλά προσαρμόζοντας κάποιες συγκεκριμένες παραμέτρους

β Λαμβάνοντας υπ’ όφεν το σύνολο των QoS παραμέτρων και τους διαθέσιμους πόρους του δικτύου, το δίκτυο αποφασίζει αν μπορεί να παρέχει ή όχι το συγκεκριμένο επίπεδο υπηρεσίας

Η παροχή QoS από το 802.16 βασίζεται σε ένα σύστημα «φακέλου» όπως φαίνεται στην παρακάτω εικόνα και ορίζει διάφορα σύνολα παραμέτρων.
ProvisionedQoSParamSet: Ένα σύνολο από εξωτερικές παραμέτρους για το QoS που έχουν να κάνουν με το MAC επίπεδο, όπως για παράδειγμα παράμετροι που έχουν να κάνουν με το σύστημα διαχείρισης του δικτύου.

AdmittedQoSParamSet: Ένα σύνολο παραμέτρων για τις οποίες ο BS, πιθανότατα και ο SS, δεσμεύονται πόρους (οι πόροι στην συγκεκριμένη περίπτωση δεν είναι απαραίτητα μόνο κάποιο εύρος ξωσίς αλλά μπορεί να είναι μνήμη, επεξεργαστική ισχύς κ.ο.κ.)

ActiveQoSParamSet: Ένα σύνολο παραμέτρων που αντικατοπτρίζουν την πραγματική υπηρεσία που παρέχεται στην συσχετιζόμενη ενεργή ροή υπηρεσίας.

QoS Provision Model

Το πρότυπο, υποθέτει ότι ένα κομμάτι (Authentication Module) που βρίσκεται στον BS είναι υπεύθυνο για την εξουσιοδότηση, δηλαδή είναι αυτό που αποδέχεται ή αρνείται μία αλλαγή στις QoS παραμέτρους που συσχετίζονται με μία ροή υπηρεσίας. Αυτή η μονάδα μπορεί να παρέχει μία ροή υπηρεσίας αυτομάτως ή μπορεί να αναβάλει την ενεργοποίηση της συγκεκριμένης ροής υπηρεσίας για κάποια επόμενη χρονική στιγμή.

Όπως αναφέρθηκε το πρότυπο υιοθετεί ένα μοντέλο «φακέλου», το οποίο περιορίζει τις πιθανές τιμές των πεδίων AdmittedQoSParamSet και ActiveQoSParamSet. Υπάρχουν δύο μοντέλα που χρησιμοποιούνται: το Provisioned Authorization Model και το Dynamic Authorization Model. Στο πρώτο από αυτά, οι παράμετροι δίνονται εξ των προτέρων, για παράδειγμα από το σύστημα διαχείρισης του δικτύου. Στο δυναμικό μοντέλο, οι αποφάσεις που λαμβάνονται από τα κομμάτια που είναι υπεύθυνα για την εξουσιοδότηση βασίζονται στην υλοποίηση του εκάστοτε κατασκευαστή. Στην υλοποίηση αυτήν, μπορεί να χρησιμοποιούνται ρουτίνες που επικοινωνούν με κάποιον εξωτερικό εξυπηρετητή για πάροχους πληροφορίες σχετικά με τις πολιτικές που μπορούν να ακολουθήσουν από το σύστημα.
5.3.6.2 Μηχανισμοί QoS

5.3.6.2.1 Classification

Όπως ήδη αναφέρθηκε όλα τα πακέτα που δημιουργούνται από ενεργές εφαρμογές περέχουν μία τιμή CID και μία SFID. Η μονάδα που είναι υπεύθυνη για την ταξινόμηση των πακέτων (classification module) αναγνωρίζει τα πακέτα με βάση αυτές τις τιμές και τα προωθεί στις κατάλληλες ουρές.

Διαφορετικές εφαρμογές μπορούν να εγκαθιδρύσουν διαφορετικές συνδέσεις. Το 802.16 μπορεί να παρέχει ταξινόμηση με βάση την ροή (per-flow classification) ώστε να μπορεί να υποστηρίζει υπηρεσίες QoS με βάση αυτή (per-flow QoS services).

5.3.6.2.2 Πρόσβαση στο κανάλι

Η μονάδα που είναι υπεύθυνη για το packet scheduling διαμέινει εύρος ζώνης για τις συνδέσεις, που πρακτικά σημαίνει ότι διαμειώνει τον κατάλληλο αριθμό χρονοθυρίδων (για TDM) ή συχνοτήτων (για OFDM) για κάθε σύνδεση στο κανάλι. Επίσης η μονάδα αυτή αποφασίζει πότε μία σύνδεση επιτρέπεται να στείλει δεδομένα. Η πληροφορία αυτή βρίσκεται στο UL-MAP και στο DL-MAP. Υπάρχουν δύο ξεχωριστές ομάδες χρονοπρογραμματισμού πακέτων, η μία είναι υπεύθυνη για την ζεύξη ανόδου και η άλλη για την ζεύξη καθόδου. Η μονάδα που είναι υπεύθυνη για την ζεύξη καθόδου μπορεί εύκολα να πληροφορηθεί για την κατάσταση των ουρών. Το πρότυπο δεν διευκρινίζει τον αλγόριθμο με βάση τον οποίο πρέπει να λειτουργεί η μονάδα αυτή. Οι αλγόριθμοι που χρησιμοποιούνται για τον σκοπό αυτό μπορεί να έχουν ομοιότητες με τους αντίστοιχους που χρησιμοποιούνται σε δρομολογητές για τον χρονοπρογραμματισμό. Από την άλλη, η μονάδα που είναι υπεύθυνη για την ζεύξη ανόδου είναι αρκετά πιο περίπλοκη καθώς οι ουρές είναι κατανεμημένες ανάμεσα στους διάφορους σταθμούς συνδρομητών. Έτσι πρέπει να αναλύσουν πληροφορίες για την κατάσταση των ουρών αλλά και των απαιτήσεων για εύρος ζώνης από κάθε σύνδεση μέσω των BW Request μηνυμάτων, όπως αυτά ορίζονται μέσα στο πρότυπο. Όπως και για τον αλγόριθμο που χρησιμοποιείται για τον χρονοπρογραμματισμό των πακέτων της ζεύξης καθόδου, έτσι και εδώ, ο αλγόριθμος που καθορίζει τα UL-MAP δεν ορίζεται από το πρότυπο.
Οπως αναφέρθηκε και σε προηγούμενη ενότητα ο αλγόριθμος έχει δύο τρόπους λειτουργίας, τον GPC και τον GPSS:

Β Όταν ο τρόπος λειτουργίας είναι το GPC, ο αλγόριθμος χρονοπρογραμματισμού της ζεύξης ανόδου κατανέμει το διαθέσιμο εύρος ζώνης ανά σύνδεση. Η «νοημοσύνη» του αλγόριθμου βρίσκεται στον σταθμό βάσης. Από την άλλη, οι μονάδες χρονοπρογραμματισμού που βρίσκονται στα τερματικά είναι αρκετά απλές καθώς χρειάζονται απλά να ακολουθούν τις παραμέτρους τους UL-MAP.

Β Στο GPSS ο αλγόριθμος κατανέμει το εύρος ζώνης ανά σταθμό συνδρομητή. Ετσι ο σταθμός είναι υπεύθυνος για να διαχειρίσει το απαραίτητο εύρος ζώνης που απαιτεί κάθε εφαρμογή (που ανήκει στον σταθμό αυτό). Συγκεκριμένα με το GPC, το GPSS απαιτεί λιγότερο πολυπλοκότητα αλγόριθμου για τον σταθμό βάσης. Από την άλλη πλευρά όμως, η πολυπλοκότητα αυτή μεταβιβάζεται στους σταθμούς συνδρομητών.

Η επόμενη εικόνα συνοψίζει την αρχιτεκτονική του QoS που παρέχεται από το 802.16 και η οποία μπορεί να προσφέρει πολλαπλά επίπεδα ποιότητας υπηρεσίας: υπηρεσία υπηρεσίας (Quantitative Service), ποιοτική υπηρεσία (Qualitative Service) και υπηρεσία βέλτιστης προσπάθειας (Best Effort Service).

IEEE 802.16 QoS Architecture

Στο πρότυπο δίνονται κάποιες λεπτομέρειες για τις περιπτώσεις όπου χρήση του ραδιοφάσματος στις ελεύθερες συχνότητες (2.4GHz και 5.4GHz), καθώς αυτές είχαν πρωτότυπα δεσμευτεί για χρήση από το πρότυπο 802.11, που χρησιμοποιείται για ασύρματα τοπικά δίκτυα (WLAN). Για να αποφευχθούν οι παρεμβολές με αυτούς τους χρήστες, που αναφέρονται και ως «πρωτότυπες
χρήστες» (Primary Users), το πρότυπο καθορίζει αλγόριθμους για ανιχνεύονται και να αποφεύγονται αυτές οι καταστάσεις. Αναφερόμενη ως Δυναμική Επιλογή Συχνότητας (Dynamic Frequency Selection – DFS), η διεργασία αυτή είναι μία δυνατότητα του συστήματος να αλλάζει φυσικά RF κανάλια μεταξύ της αποστολής και της λήψης, βελτιώνοντας σε κρίσεις που έχουν να κάνουν με μεταφορές που προγραμματίστηκαν στο κανάλι επικοινωνίας. Οι DFS διεργασίες ελέγχουν τα κανάλια για τυχόν υπάρχει «πωτευτήριων» χρηστών και διακόπτουν την επικοινωνία σε περίπτωση που βρισκόταν στόχος χρήστης και περιοδικά ελέγχουν ξανά το κανάλι για νέους. [PH1]

5.3.7 ARQ

Το ARQ στο 802.16 υλοποιείται με την τεχνική του κυλώμενου παραθύρου. Λοιπόν σημαίνει ότι ο πομπός στέλλει ένα ορισμένο αριθμό πακέτων και περιμένει να λάβει επιβεβαίωσης παράδοσης αυτών. Εάν αυτό δεν συμβεί για κάποιο πακέτο (λόγω μη παραλαβής ή λόγω απόρριψης του πακέτου γιατί περιεχόταν σφάλματα) ο πομπός ξαναστέλνει το ξαναστέλνει. Παράλληλα για τα ακόλουθα παραθυρόμενα πακέτα ονομάζεται το παράθυρο, έτσι ώστε να στείλει τα επόμενα.

5.3.8 Υποστηρίζομενες τοπολογίες

5.3.8.1 Σημεία προς πολλά σημεία (PMP)

Η κάτω ζωή του BS χρησιμοποιεί PMP. Όλοι οι δέκτες που είναι συνδεδεμένοι με αυτό το BS θα λαμβάνουν τα ίδια δεδομένα. Από την στιγμή που ο σταθμός βάσης είναι ο μόνος που εκπέμπει (στην κάτω ζωή) δεν υπάρχει λόγος για μοιραίες (η πρόσβαση στο κανάλι με άλλους πομπούς. Έτσι οι δέκτες – σταθμοί συνδεσμοτήρων λαμβάνουν όλα τα δεδομένα και κατανέμουν αυτά προορισμένα για αυτούς. Επίσης, αυτές παραδίδονται τόσο multicast όσο και broadcast πακέτα (μορίων σε υπηρεσίες θύελλα και υπηρεσίες ελέγχου του δικτύου).

Η άνω ζωή είναι πράγματι να διαμορφώνεται στους SS λαμβάνοντας υπό εκφράζοντας τις παραμέτρους του QoS. [WMO]

5.3.8.2 Mesh

Οι τοπολογίες τύπου mesh διαιρούνται πάνω παλιά από την PMP. Αυτό γιατί σε αυτές οι SS δεν επικοινωνούν μόνο με τον BS αλλά και μεταξύ τους. Επίσης στις mesh τοπολογίες οι SS μπορούν να προβοδούν και να δημιουργούν πακέτα άλλων SS. Ανάλογα με τον αλγόριθμο και το πρωτόκολλο που χρησιμοποιείται για τη μετάδοση, η διακίνηση δεδομένων μεταξύ των SS μπορεί να γίνεται με κατανεμημένο χρονοπρογραμματισμό μεταξύ των SS, με συγκεντρωτικό χρονοπρογραμματισμό και με τον BS είτε με συνδυασμό των δύο αυτών μεθόδων.

Μέσα σε ένα mesh δίκτυο, ο κόμβος που έχει απευθείας επικοινωνία με κάποιον εξωτερικό κόμβο, ονομάζεται Mesh BS (Mesh Base Station) ενώ όλοι οι υπόλοιποι ονομάζονται Mesh SS (Mesh Subscriber Station). Άλλες σημαντικές έννοιες σε ένα mesh δίκτυο είναι οι "γείτονες" (neighbor), "γειτονιά" (neighborhood) και "διευρυμένη γειτονιά" (extended neighborhood). Οι σταθμοί με τους οποίους ένας κόμβος έχει α’ ευθείας σύνδεση ονομάζονται γείτονες. Οι γείτονες ενός κόμβου αποτρέπουν την διευρυμένη γειτονιά του ενώ στην διευρυμένη γειτονιά του κόμβου ανήκουν οι κόμβοι και οι γείτονες των γείτονων.

Όταν γίνεται εύκολη κατανόηση, όταν χρησιμοποιείται μία mesh τοπολογία δεν αφετεί να ελέγχεται και να συντονίζονται μόνο οι SS κόμβοι για το πότε εκπέμπουν καλά και ο BS. Χρησιμοποιείται κατανεμημένο χρονοπρογραμματισμό για τις επιστροφές, άλλοι οι κόμβοι (συμπεριλαμβάνοντας και το BS) πρέπει να συντονίζονται με όλους τους γείτονες που ανήκουν στη διευρυμένη γειτονιά τους ενημερώνοντας τους με το πρόγραμμα τους, χρονικότερα να μην υπάρχει συμφράση κατά τη διακίνηση δεδομένων ή ληκτικότητα ελέγχου των άλλων κόμβων.
Δεν υπάρχει διαφορά ανάμεσα στην ύψω σέβεξη και την κάτω σέβεξη. Αντίθετα όταν χρησιμοποιείται χρονοπρογραμματισμός που συντονίζεται από τον BS (συγκεντρωτική προσέγγιση) ο κάθε κόμβος στέλνει στον BS μία αίτηση για την χρήση του ραδιοδιαδικτύου όταν έχει δεδομένα προς αποστολή. Ο BS συγκεντρώνει τις αιτήσεις αυτές και ύστερα ενημερώνει τους κόμβους που βρίσκονται στην γειτονιά του για το πώς θα κατανεμηθούν οι πόροι του συστήματος. [PH1]

Mesh Network Topology

5.4 Υποεπίπεδο Σύγκλισης (CS)

Το CS εκτελεί τις ακόλουθες διαδικασίες:

- Λαμβάνει πακέτα από τα ανώτερα επίπεδα του δικτύου
- Ταξινομεί τα πακέτα που έχει δεχθεί
- Επεξεργάζεται τα πακέτα των ανώτερων επιπέδων (εάν αυτό απαιτείται)
- Παραδίδει τα πακέτα που έχει φτιάξει στο MAC CPS

Το CS υποστηρίζει δύο υλοποιήσεις, το ATM CS και το packet CS. Είναι εύκολα κατανοητό ότι το πρώτο χρησιμοποιείται σε δίκτυα ATM ενώ το δεύτερο σε δίκτυα όπως το IP, το PPP και το Ethernet.

Το ATM CS είναι μία λογική διαπαράγωγή που συνδέει διαφορετικές ATM υπηρεσίες με το MAC CPS. Το ATM CS λαμβάνει δεδομένα από το ATM επίπεδο (cells), τα ταξινομεί, εάν απαιτείται PHS και στην συνέχεια τα παραδίδει στο MAC CPS. Το ATM CS είναι σκοπιμό προδιαγραφομένο για να επιτυγχάνεται σύγκλιση ανάμεσα στα ATM δίκτυα και στο πρότυπο 802.16.

Το packet CS εκτελεί τις εξής λειτουργίες:
- Ταξινομεί τα πακέτα των ανώτερων επιπέδων στις κατάλληλες συνδέσεις
- «Συμπιέζει» τις επικεφαλίδες των πακέτων (προαιρετικά)
Προωθεί τα επεξεργασμένα πακέτα στο MAC CPS που είναι υπεύθυνο για την αποστολή της πληροφορίας στον δέκτη.

Λαμβάνει τα πακέτα από το MAC CPS επίπεδο του αποστολέα και αποσυμπιέζει τις επικεφαλίδες (προαιρετικά).

Το επίπεδο αυτό είναι υπεύθυνο για την ορθή αποστολή της πληροφορίας σύμφωνα με τις παραμέτρους QoS, τμηματοποίησης, αλληλουχίας και όλες τις υπόλοιπες λειτουργίες μεταφοράς που είναι συσχετισμένες με μία συγκεκριμένη σύνδεση. Αντίστοιχα είναι υπεύθυνο για την λήψη και παράδοση των πακέτων στα ανώτερα επίπεδα.
6 Mobile WiMAX (802.16e)

6.1 Εισαγωγή

Η τεχνολογία WiMAX, βασισμένη στο πρότυπο IEEE 802.16-2004, είναι η τεχνολογία που θα διαδραματίσει ένα ιδιαίτερα σημαντικό ρόλο στα μητροπολιτικά δίκτυα ασύρματης ευρυζωνικής πρόσβασης. Το πρώτο αρχαίο της προσπάθειας, της εταιρείας Cetecom Labs στη Μάλαγα, λειτουργεί πλήρως και πάνω από 150 δοκιμές WiMAX είναι εν εξέλιξη στην Ευρώπη, την Ασία, την Αφρική και στις ΗΠΑ. Αδιαμφισβήτητα, η τεχνολογία WiMAX, έχει αποδειχθεί οικονομικώς ιδιαίτερα αποδοτική σε σταθερά ασύρματα ιδιότητες και προς τις DSL υπηρεσίες. Στο παρακάτω σχήμα φαίνεται η εξέλιξη της οικογένειας προτύπων IEEE 802.16, όπως αναμένεται μέχρι το 2009.

Το Δεκέμβριο του 2005 η IEEE επικύρωσε την τροποποίηση 802.16e, που ήταν η φυσική συνέχεια της οικογένειας προτύπων 802.16. Διπλώ την τροποποίηση προσθέτει τα νέα χαρακτηριστικά γνωριμίας και τις ιδιότητες στο υπάρχον πρότυπο τα οποία είναι απαραίτητα για να υποστηρίξουν την κινητικότητα. Το WiMAX Forum καθορίζει τώρα τα σχεδιασμένα αποδόσεις και πιστοποιήσεις των συστημάτων που είναι βασισμένα στη νέα τροποποίηση, IEEE 802.16e, υπερβαίνοντας τις διεπαφές αέρα. Επίσης καθορίζει τη δικτυακή αρχιτεκτονική, που είναι απαραίτητη για την εφαρμογή ενός από άρος σε σχέση WiMAX κινητών δικτύων. Η πρώτη έκδοση δημοσιεύθηκε στις αρχές του 2006 και από την αρχή φαίνεται ότι το κινητό WiMAX είναι μια ευρυζωνική ασύρματη λύση που επιτρέπει τη σύγκλιση κινητών και σταθερών ευρυζωνικών δικτύων. Η δικτυακή αρχιτεκτονική, προσβάσεων και μιας ευέλικτης δικτυακής αρχιτεκτονικής.

Το κινητό WiMAX υιοθετεί την τεχνολογία OFDMA για τη βελτίωση της απόδοσης σε περιβάλλον πολλαπλών διαδρομών και σε περιπτώσεις που δεν υπάρχει οπτική επαφή. Το κλιμακούμενο OFDMA (SOFTDMA - Scalable OFDMA) εισήγαγε στο πρότυπο IEEE
802.16e για να υποστηρίζει κανάλια κλιμακωμένου εύρους ζώνης από 1.25 έως 20 MHZ. Η υπεύθυνη τεχνική ομάδα (Mobile Technical Group - MTG) του WiMAX Forum, εξελίσσει τις παραμέτρους εκείνους που θα καθορίσουν τόσο τα υποχρεωτικά όσο και τα προαιρετικά χαρακτηριστικά γνωρίσματα του προτύπου και που θα είναι σύμφωνα με τις προδιαγραφές του WiMax Forum.

Οι προδιαγραφές για το κινητό WiMAX επιτρέπουν στα κινητά συστήματα να διαμορφώνονται βάσει ενός συνόλου κωνοειδών χαρακτηριστικών γνωρισμάτων που εξασφαλίζουν έτσι την βασική λειτουργία, τόσο για τα τερματικά όσο και για τους σταθμούς βάσης οι οποίοι γίνονται πλήρως διαλειτουργικοί.

Μερικά χαρακτηριστικά των σταθμών βάσης επιτρέπουν κάποια επιπλέον εξέλιξη, η οποία βασίζεται σε συγκεκριμένα σκευάσματα ανάπτυξης, που μπορεί να απαιτεί τροποποιήσεις τόσο στη χωρητικότητα όσο και στην καλύψη.

Στην πρώτη κυκλοφορία του κινητού WiMAX καλύπτονται κανάλια με εύρος ζώνης 5, 7, 8.75, και 10 MHZ για τις παγκόσμιες εξουσιοδοτημένες ζώνες συχνοτήτων των 2.3 GHz, 2.5 GHz και 3.5 GHz. Η ομάδα WiMAX Forum Network Working Group (NWG), αναπτύσσει τις υψηλότερες επιπέδους προδιαγραφές δικτύωσης για τα κινητά συστήματα WiMAX, πάρα πάρα από αυτό που καθορίζεται στα IEEE 802.16 πρότυπα, αλλά εξακολουθεί να εκδίδει νέες προδιαγραφές δικτύων.

Η κοινή προσπάθεια που κάνουν οι υπεύθυνοι εξέλιξης του IEEE 802.16 και του WiMAX Forum, βοηθά να καθορίσει η από άκρο σε άκρο λύση για τα κινητά δίκτυα WiMAX. Τα συστήματα του κινητού WiMAX έχουν τη δυνατότητα εξέλιξης τόσο στην τεχνολογία ασύρματης πρόσβασης όσο και στην αρχιτεκτονική του δικτύου, παρέχοντας, κατά συνέπεια, μεγάλη ευελιξία στις προοπτικές επέκτασης των δικτύων και στην παροχή υπηρεσιών. Μερικά από τα βασικά χαρακτηριστικά γνωρίσματα που υποστηρίζεται το κινητό WiMAX είναι:

Β Υψηλού ρυθμού μετάδοσης: Ο συνδυασμός της εφαρμογής MIMO1 κεραίων και της ευελιξίας στο διαχωρισμό των καναλιών καθώς και οι προηγμένες τεχνικές κωδικοποίησης και νομοδομίας επιτρέπουν στην τεχνολογία του κινητού WiMAX να υποστηρίζει τεχνικές που υποστηρίζει κανάλια 28 Mbps ανά τομέα και στην ζεύξη ανόδου μέχρι 63 Mbps, ανά τομέα και στην ζεύξη ανόδου μέχρι 28 Mbps ανά τομέα σε ένα κανάλι 10 MHz.

1 Για περισσότερες πληροφορίες βλ. Παράρτημα Β
6.2 Πιωτικη Υπηρεσιων(QoS): Η θεμελιώδης προοπτική της MAC αρχιτεκτονικής σύμφωνα με το IEEE 802.16 είναι το QoS. Επιπλέον, ο διαχωρισμός καναλιών και η σηματοδοτική MAP παρέχουν έναν ειδικότερο μηχανισμό για την καλύτερη δυνατή σχεδιασμό της χωρητικότητας των καναλιών, της συγκράτησης και του χρόνου πώς από την ασύμμετρη διαπνοή που βασίζεται σε πλαίσιο προς πλαίσιο τεχνική.

6.2.1 Κλιμάκωση: Παρά την ολοένα και περισσότερη διεθνοποιημένη οικονομία, οι πόροι που διατίθενται παράγοντα για ασύμμετρη ευρυζωνικότητα, είναι ακόμα αρκετά ανόμοια κατανεμημένοι. Ωστόσο, η τεχνολογία του κινητού WiMAX, είναι σε θέση να μπορεί να λειτουργήσει σε κλιμάκωμα καναλιά από 1.25 έως 20 MHz. Έτσι, μπορεί να συμφωνήσει με τις ποικιλίας παραδόσεις απαιτήσεις καθώς οι προσδόκεισες οδόνες μακροπρόθεσμα προς ένα επίπεδο εναρμόνισης φάσματος. Αυτό επίσης επιτρέπει στις διαφορετικές οικονομίες να κατανοήσουν τα πολύπλοκα συστήματα κινητού WiMAX για τις συνεχιζόμενες γεωγραφικές ανάγκες τους. Για παράδειγμα την παροχή προσιτής Διαδικτυακής πρόσβασης ακόμα και σε αγροτικές περιοχές μπορεί να γίνει χωρίς ιδιαίτερα υψηλό κόστος, όπως απαιτούσαν μέχρι τώρα οι ενασχόλεμες λύσεις.

6.2 Κινητικότητα: Το κινητό WiMAX υποστηρίζει εξαλειμένες τρόπους μετάδοσης, με χρονική πιθανότητα λάθους λιγότερο από 50 χιλιοστά του δευτερόλεπτου, έτσι ώστε να εξασφαλίζει ότι εφαρμογές πραγματικού χρόνου, όπως VoIP, θα λειτουργούν πλήρως αποδοτικά. Τα ευλογητά σχέδια διαχείρισης εγγυάται ότι η ασφάλεια διατηρείται πλήρως κατά τη διάρκεια της μετάδοσης.

6.2.1 OFDMA

Οπως ήταν αναμενόμενο το πρότυπο IEEE 802.16e χρησιμοποιεί την τεχνική πολυπλέξειας συγκράτησης OFDMA, η οποία χωρίς διαχωρίζει το σύνολο ζώνης σε υπό κανάλια πολλαπλάσιας συγκράτησης, όπως φαίνεται παρακάτω.
6.2.2 Scalable OFDMA-SOFDMA

Η τεχνική που χρησιμοποιεί το πρότυπο IEEE 802.16e στα ασύρματα μητροπολιτικά δίκτυα, είναι βασισμένη στο σχετικό του καιμακούμενου OFDMA. Το SOFDMA υποστηρίζει ένα αρχικά μεγάλο φάσμα εύρους ζώνης που είναι αρχικά ευέλικτο και μπορεί να καλύψει τις ανάγκες που προκύπτουν στον τρόπο κατανόμης και χρήσης του φάσματος. Κάποιες παράμετροι της τεχνολογίας αυτής παρουσιάζονται στον παρακάτω πίνακα.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Channel Bandwidth (MHz)</td>
<td>1.25 5 10 20</td>
</tr>
<tr>
<td>Sampling Frequency (F_0 in MHz)</td>
<td>1.4 5.6 11.2 22.4</td>
</tr>
<tr>
<td>FFT Size (NFFT)</td>
<td>128 512 1024 2048</td>
</tr>
<tr>
<td>Number of Sub-Channels</td>
<td>2 8 16 32</td>
</tr>
<tr>
<td>Sub-Carrier Frequency Spacing</td>
<td>10.94 kHz</td>
</tr>
<tr>
<td>Useful Symbol Time (T_b = 1/f)</td>
<td>91.4 microseconds</td>
</tr>
<tr>
<td>Guard Time (T_g = T_b/8)</td>
<td>11.4 microseconds</td>
</tr>
<tr>
<td>OFDMA Symbol Duration (T_s = T_b + T_g)</td>
<td>102.9 microseconds</td>
</tr>
<tr>
<td>Number of OFDMA Symbols (5 ms Frame)</td>
<td>48</td>
</tr>
</tbody>
</table>

Table 1: OFDMA Scalability Parameters

6.3 Τεχνικές μετάδοσης

To φυσικό επίπεδο του 802.16e υποστηρίζει τεχνικές όπως TDD, FDD, και την ημιαμφίδρομη Half-Duplex FDD. Παράλληλα, αυτή η αρχική έκδοση της πιστοποίησης για το κινητό WiMAX περιέχει μόνο TDD. To WiMAX Forum εξετάζει στις επόμενες δημοσιεύσεις να προωθήσει την τεχνική FDD για αγορές όπου οι επικαταστάσεις συνήθως ισχύουν τη TDD ή είναι καταλληλότερες για εφαρμογή FDD.
6.4 Περιγραφή MAC επιπέδου

Τα πρότυπα 802.16 αναπτύχθηκαν εξαιρετικά για την παροχή ευρωπαϊκών υπηρεσιών, όπως φωνή, δεδομένα και βίντεο. Το επίπεδο MAC είναι βασισμένο στο πρότυπο DOCSIS, το οποίο μπορεί να υποστηρίζει κυκλοφορία δεδομένων με ρυθμό (burst), με απαίτηση για πολύ υψηλό υψηλότερο μετάδοσης, ενώ ταυτόχρονα υποστηρίζει μετάδοση βίντεο και φωνής πάνω από το ίδιο κανάλι. Οι πόροι που διατίθενται είναι σε ένα τερματικό από το χρονοπρογραμματιστή του MAC μπορεί να ποικίλουν από μια απλή χρονική περίοδο μέχρι ένα απόλυτο πλαίσιο, παρέχοντας κατά συνέπεια μια πολύ μεγάλη δυναμική παρουσία ρυθμιστικής χρηστών οποιασδήποτε στιγμή.

Επιπλέον, επειδή η πληροφορία που ρυθμίζει την κατανομή πόρων μεταβαίνει μέσω των ΜΑΡ μηχανών, που βρίσκονται στην αρχή κάθε πλαίσιου, ο χρονοπρογραμματιστής μπορεί δυναμικά να αλλάξει την κατανομή των πόρων πλαίσιο προς πλαίσιο για να προσαρμοστεί στην κυκλοφορία αυτού του τύπου.

6.5 Αρχιτεκτονική

Η IEEE καθόρισε μόνο το ψηφιακό (PHY) και MAC επίπεδο στο πρότυπο. Αυτή η προσέγγιση λειτουργεί αποτελεσματικά μόνο σε τεχνολογίες όπως το Ethernet και το WiFi, τα οποία υπάγονται σε άλλος όργανο ελέγχου όπως η IETF (Internet Engineering Task Force) και είναι υποθέσιμο να θέσουν τα πρότυπα για πρωτοπλαία υψηλότερων επιπέδων όπως TCP/IP, SIP, VoIP and IPSec. Ομως στον ασύμπατο κινητό κόσμο, ομάδες όπως η 3GPP (3G Partnership Project) και 3GPP2 (3G Partnership Project 2) ήταν πρότυπα για μια μεγάλατορρεχούχο διασταυρών και πρωτοπλαίες επειδή απαιτούν όχι μόνο διαλειτουργική της αεροδιαστάσεως, αλλά επίσης διαλειτουργικήτα μεταξύ προμηθευτών για ελεύθερη περιστροφή (roaming) σε δίκτυο που αποτελείται από διαφορετική υλικιωμεταθετική χρήση και τεχνολογία.

Τόσο οι προμηθευτές όσο και οι χρήστες έχουν αντληθεί αυτή την κατάσταση και έχουν συντίθεσει επιπέδοι στέμματα όπως το ΙΕΕΕ για την κατανομή προτύπων. Δύο από αυτές είναι η WiMAX Forum’s Network Working Group, η οποία εστιάζει στη δημιουργία προδιαγραφών για τα σταθερά, φορτηγά και κινητά WiMAX συστήματα, πάροικες από αυτές που προσδιορίζονται στο πρότυπο IEEE 802.16, και η Service Provider Working Group που βοηθά στην καταχώρηση των απαιτήσεων και των προτεραιοτήτων, σύμφωνα με τους χρήστες, και τις καταθέτει στην NWG.

Η από αυτή σε αυτήν την αρχιτεκτονική ενός κινητού WiMAX δικτύου είναι βασισμένη σε μια IP πλατφόρμα, που χρησιμοποιεί μεταγωγή πακέτων και όχι τη μεταγωγή κυκλωμάτων που χρησιμοποιείται στην παραδοσιακή τηλεφωνία. Είχε το πλεονέατό ότι η συνωλική κόστος της ιδιοκτησίας μειώνεται κατά τη διάρκεια του κύκλου ζωής μιας επέκτασης των WiMAX δικτύων.

Η χρήση του IP σημαίνει ότι ένα κοινό δίκτυο κοιμίματος μπορεί να χρησιμοποιηθεί, χωρίς να είναι απαραίτητο να διατηρεί τόσο δίκτυο μεταγωγής πακέτων όσο και μεταγωγής κυκλωμάτων, με όσα αυτό συνεπάγεται.

Η πρόοδος που συνεπελέφτηκε όσον αφορά τόσο τον εξοπλισμό όσο και το λογισμικό που χρησιμοποιεί το κινητό WiMAX είναι αλματέτος και ταχύτατες από τις διάφορες εξελίξεις στο χώρο των τηλεπικοινωνιών. Σαν τελικό αποτέλεσμα, έχουμε ένα δίκτυο που συνεχώς αποδίδει υψηλό επίπεδο υπηρεσιών και εκμεταλλεύεται πλήρως τις όποιες εξελίξεις προκύπτουν στην κοινότητα του Διαδικτύου. Αυτό οδηγεί σε χαμηλότερο κόστος, υψηλή εξελιξιμότητα και γνήσια επέκταση του δικτύου λόγω του ότι παρέχει κυρίως υπηρεσίες που βασίζονται σε λογισμικό.
7 Εφαρμογές

7.1 Γενικά

Το WiMAX είναι μια τεχνολογία που βασίζεται στη μετάδοση πλαισίων για ασύρματη ανάπτυξη βασισμένη σε ένα σύνολο νέων τεχνολογιών. Προσφέρει για περιπτώσεις των τεχνολογιών 4G και η ομάδα εργασίας 802.20 High Speed Mobile Broadband Wireless Access (MBWA), έχουν μετατοπίσει το πεδίο αρεσκειάς τους προς τη χρήση μεθόδων πολλαπλών καναλιών όπως OFDM, HARQ, FEC, MIMO-ASS και άλλες συμπληρωματικές τεχνολογίες σαν μέρος του WiMAX.

Το WiMAX προτείνεται ως η καταλληλότερη τεχνολογία για εφαρμογή σε μητροπολιτικά δίκτυα και να συνδέει περιοχές που χρησιμοποιούν WiFi μεταξύ τους, αλλά και με άλλες μέρη του Διαδικτύου. Επίσης μπορεί να παρέχει εναλλακτική ασύρματη λύση ως προς τις ενσύρματες συνδέσεις DSL και άλλων τεχνολογιών που στοχεύουν στην ευρυζωνική πρόσβαση του τελευταίου μιλίου.

Ωστόσο, ο τομέας των εφαρμογών είναι ευρύτερος και επικαλύπτει μερικούς, όπως τα κινητά δίκτυα ευρείας ζώνης WAN και ασύρματα τοπικά δίκτυα. Το πρότυπο IEEE 802.16 παρέχει έως 50 χλμ της ενσύρματης ακτίνας κάλυψης και επιτρέπει τη διασύνδεση μεταξύ χρηστών χωρίς απαραίτητα να υπάρχει οπτική επαφή μεταξύ τους. Αυτό δε σημαίνει όμως ότι χρήστες που βρίσκονται πέρα αυτής της ακτίνας δε θα έχουν τη δυνατότητα επικοινωνίας.

Επίσης αναμένεται ότι το WiMAX θα παρέχει τη δυνατότητα για καλύτερη ποιότητα ευρυζωνικές υπηρεσίες όπως VoIP, βίντεο, και ταυτόχρονα Διαδικτυακή πρόσβαση. Οι περισσότερες παραδοσιακές τηλεφωνικές επιχειρήσεις που βασίζονται κυρίως στην ενσύρματη μετάδοση εξετάζουν προσεκτικά τη δυνατότητα εφαρμογής του WiMAX στη σύνδεση του τελευταίου μιλίου.

Οι νερείδες του WiMAX έχουν τη δυνατότητα σύνδεσης με τον χορμό του Διαδικτύου μέσω είτε μιας καταλυτικής σύνδεσης είτε μέσω οπτικών ινών. Νερείδες επιχειρήσεις κυψελών
τεχνολογιών αξιολογούν το WiMAX σαν μέσο ανάξεσης του εύρους ζώνης για εφαρμογές υψηλών απαιτήσεων. Λυτές οι εφαρμογές βασίζονται στη δυνατότητα της τεχνολογίας αυτής να χρησιμοποιείται ως ένα δίκτυο κοιμιού τόσο για το διαδίκτυο όσο και για κυκλοφορικά δίκτυα από κάποια απομακρυσμένη περιοχή.

Βασιζόμενοι στην ιδιαίτερη οικονομική αποτελεσματικότητά του για αρκετά μεγάλες αποστάσεις, το WiMAX δεν παραχωρείται μόνο σε τέτοιες εφαρμογές, και μπορεί να είναι η απάντηση στις αρκετά ακριβείς TI συνθήκες. Λαμβάνοντας υπόψη την περιορισμένη υποδομή σε αναχώματες συνθήκες κάποιων μη αναπηρημένων χωρών (όπως στην Αρμενία), οι διαπραγματεύσεις για την εγκατάσταση ενός σταθμού WiMAX σε συνδυασμό με κάποιον άλλον υπαχώροντα τηλεπικοινωνιακό πύργο, θα είναι μικρότερες σε σχέση με την ανάκτηση των ενδυμάτων υποδομών. Οι μεγάλες, επίπεδες και αρκοοκατοικημένες εκτάσεις τέτοιων χωρών, ευνοούν τη χρήση του WiMAX που μπορεί να παρέχει κάλυψη έως 50 χλμ. Για τις χώρες που έχουν ήδη ξεπεράσει τις πολυάκτιες ενδυμάτες συνθήκες, σαν αποτέλεσμα της γεωγραφικής τους ιδιαιτερότητας, το WiMAX μπορεί να ευνοήσει τις ασάματες υποδομές κατά τρόπο ανέξοδο, εύκολο στην επέκταση και ιδιαίτερα αποτελεσματικό.

7.2 Διεθνείς συνεργασίες

Τον Ιούλιο του 2005, η Nokia και η Intel ανακοίνωσαν μια συνεργασία που θα επιταχύνει την ανάπτυξη, την υιοθέτηση και την επέκταση του IEEE 802.16e σε τομείς ανάπτυξης που περιλαμβάνουν τους περιπλάνητες κινητούς, την υποδομή των δικτών και την ανάπτυξη της αγοράς. Για τις κινητές συσκευές και τους φορητούς υπολογιστές, η στρατηγική των σταθμών βάσης στοιχείει στην εξάλειψη των υποδομών των WiMAX δικτών ώστε να παρέχεται επικοινωνία και αξιόπιστη κάλυψη.

Οι εταιρείες Motorola και Intel ανακοίνωσαν τον Οκτώβριο του 2005, το σχέδιο τους για την από κοινού υιοθέτηση του κινητού WiMAX που βασίζεται στο πρότυπο IEEE 802.16e, τόσο για σταθερές όσο και ασάματες ευρυζωνικές υπηρεσίες. Ετσι, σε στάδιο δοκιμής βρίσκεται η διαλειτουργικότητα των κινητών συσκευών της Motorola, του εξοπλισμού δικτών, και του εξοπλισμού των χρηστών με τα προϊόντα της Intel.

7.3 Το WiMAX στον κόσμο

2005

β Στις ΗΠΑ μεγάλες πόλεις όπως το Los Angeles, η Nέα Υόρκη, το Σικάγο, η Βοστώνη και το San Francisco εξυπηρετούνται από την Towerstream. To Seattle από την Sprint και την Speakeasy.net. Η Καναδάς από το Pανεπιστήμιο του Winnipeg. Στην Χιλή δραστηριοποιείται η εταιρεία Entel.

7.3.1 2006

β Στις 20 Ιούνιου του 2006, η Kolonimia εταιρεία Telecom εγκατέστησε το WiMAX στην πόλη Bucaramanga. Το Μάιο του 2006 και άλλες εταιρείες άρχισαν να παρέχουν υπηρεσίες WiMAX όπως η Orbitel. Πέρα από 150 WiMAX και προ WiMAX επίσης πιστοποιημένα δομικά συνεργάζονται σε εξέλιξη.

β Στις 30 Μαρτίου του 2006, το πρώτο πλη κόσμο πρόγραμμα WiMAX εφαρμόστηκε στο Ηνωμένο Βασίλειο στην πόλη του Westminster.

β Στη Νότια Κορέα αρχίζει να εφαρμόζεται όνομα μικρού σύστημα, το WiBro/ WiMAX m που χρησιμοποιείται κύρια στην Προτούπου 802.16. Ακόμα στην Ταϊβάν προβλέπεται ότι
ΔΙΚΤΥΑ ΔΕΔΟΜΕΝΩΝ WIMAX – IEEE 802.16

θα αρχίσει μέχρι το τέλος του 2006 να λειτουργούν υπηρεσίες WiMAX που υποστηρίζονται από την κυβέρνηση.

Υπό βρίσκεται η εφαρμογή της τεχνολογίας WiMAX στην Ιαπωνία.

Τέλος, αξιοπερίεργο είναι το γεγονός ότι το μεγαλύτερο WiMAX Δίκτυο σχεδιάζεται στο Πακιστάν!

Το WiMAX αν και βρίσκεται ακόμη σε νηπιακό στάδιο ανάπτυξης, εκτιμάται ότι τα επόμενα χρόνια θα προσελκύσει εικοσιμιλλία συνδρομητών. Σαν νέα τεχνολογία, το WiMAX διαθέτει σε παγκόσμια κλίμακα, αρκετά χαμηλή συνδρομητική βάση σε σύγκριση με τις άλλες τεχνολογίες πρόσβασης στο Internet, όπως οι ADSL, ΙΣΔΝ ή μισθωμένων κυκλωμάτων. Αυτό είναι δικαιολογημένο, αν αναλογητεί κανείς ότι τα δίκτυα WiMAX δεν έχουν ακόμη αναπτυχθεί ιδιαίτερα

Το παραπάνω σχεδιάγραμμα διαίρει τους συνδρομητές τεχνολογιών που προδιαγράφονται στο πρότυπο IEEE 802.16 και τη μελλοντική αύξηση που αναμένεται σήμερα με μετρήσεις που πραγματοποίησε η εταιρεία Intel, η οποία θέλει να παίξει σημαντικό ρόλο στην ανάπτυξη του WiMAX.

Κατά το έτος του 2005 οι συνδρομητές WiMAX δεν έπανω τα 2 εκατομμύρια συνολικά σε Ευρώπη, Αμερική και Ασία, αλλά κατά το 2006 εκτιμάται ότι θα υπάρξει υπερδιπλασιασμός τους, φθάνοντας ή και ξεπερνώντας τα 5 εκατομμύρια. Στις χρονιές που ακολουθούν μάλιστα η αύξηση αναμένεται να συνεχιστεί με ανάλογους ρυθμούς, φθάνοντας ή και ξεπερνώντας τα 100 εκατομμύρια. Στους υψηλότερους ρυθμούς ανάπτυξης χρησιμοποιεί η ευκολία εγκατάστασης ενός δικτύου WiMAX, αλλά και η εύκολη εγγραφή και χρήση του από τους συνδρομητές. Είναι χαρακτηριστικό το γεγονός ότι μετά τον πρόσφατο τυφώνα που έπληξε τη Νέα Ορλεάνη των Ηνωμένων Πολιτειών και τις καταστροφές που επέφερε στο συνδικαλιστικό δίκτυο τηλεπικοινωνιών, τα σωστικά συνεργάζοντα προχώρησαν στην άμεση δημιουργία δικτύου WiMAX για την κάλυψη των αναγκών επικοινωνίας στην περιοχή.
Σύμφωνα με μελέτες, το WiMAX θα γίνει η κυρίαρχη λύση στην Κίνα, τη μεγαλύτερη πιθανή αγορά για ευφυής πρόσβαση. Το πρότυπο έχει υιοθετηθεί ήδη από την κυβέρνηση και καλείται να συμπληρώσει αποτελεσματικά τα κενά της 3G κάλυψης. Η διαχρονική εισηγμενή γύρω από το WiFI έχει σταματήσει και το 802.11 θα επιστρέφει στην εφαρμογή του σε περιορισμένες έκτασες περιοχών, που ενδεχομένως να ενσωματώνονται στο WiMax. Η Intel είναι η εταιρεία που έχει αναλάβει την προώθηση του WiMAX και αυτή της απόφαση θα την αναδείξει κυρίαρχη στην ευρύτερη περιοχή.

Η επόμενη γενική της πλαγιόμεσης Centrino1 θα υποστηρίζει το WiMAX και έτσι ελλίζει στο να έχει κάποιο προβλέψιμα, έναντι άλλων εταιρειών, σε κάποιες αρκετά μεγάλες πιθανές αγορές, συμπεριλαμβανομένων των αγορών των σημαντικότερων εθνών.

Η Nokia θα χορηγήσει από την ανάπτυξη και την τελική εθνικώση του 802.16, τόσο με τη δημιουργία τομέων και αξιοπροσωπικών βάσεων και εξοπλισμού όσο και με την ανάπτυξη δύο ή τριών μεθόδων για εφαρμογή σε κινητά των τεχνολογιών WiFi και WiMAX.

7.4 WiMAX στην Ελλάδα

Μετά από την πιλοτική λειτουργία WiMAX υπηρεσιών από διάφορους παρόχους, η διαδικασία ακολουθήθηκε μέσω δημοπρασίας από την την εταιρείες, για τη χορήγηση είδους παροχής υπηρεσιών WiMAX στην εταιρεία Cosmoline. Η διάρκεια της διαδικασίας είναι έξι (6) χρόνια και το κόστος της ανήλθε στα 20.475.000 ευρώ, ενώ η τιμή εκκίνησης της διαδικασίας χορήγησης του Δικαιώματος είχε ορισθεί στα 1.650.000 ευρώ. Στη Δημοπρασία που έληξε ύστερα από τη διαδικασία 18 γύρω της διαδικασίας υπηρεσίας, συμμετέχουν επίσης, οι εταιρείες Tellas, Vodafone, Hellas On Line, Forthnet, Διεθνής Αερολιμένας Αθηνών και Clearwire Europe.

Οι εφαρμογές του WiMAX στην Ελλάδα, αλλά και γενικότερα, μπορούν να είναι πολλές. Με της μεγάλες αποστάσεις που καλύπτει και τους υψηλότερους κόστους μετάδοσης που μπορεί να παρέχει μπορεί να λύσει σημαντικά προβλήματα που απειλούν των τεχνολογιών υπολογιστή της δικτύων σήμερα, όπως:

- Δώστε χρημάτων στην κυψελωτά συστήματα κινητής τηλεφωνίας. Η εισαγωγή του προτύπου αυτού ισχυρίζεται να μειώσει σημαντικά το κόστος εξόπλισης των δικτύων κινητής τηλεφωνίας μιας και αποτελεί μια οικονομικήτερη πρόταση, αν συγχρητίζεται με την οπτική ίνα, για τις εταιρείες κινητής τηλεφωνίας. Εξασφαλίζει ταυτόχρονα αξιοπιστία και υψηλές ρυθμός μετάδοσης που απαντά τα δώστε χρημάτων των κινητών δικτύων εποχονικών.

- Broadband on Demand. Παρέχει υψηλούς ρυθμούς μετάδοσης κανόνες εφετήρι τη χρήση της τεχνολογίας για εφαρμογές πραγματικού χρόνου κάτι που με το πρότυπο IEEE 802.11 σε μεγάλες αποστάσεις δεν έχει εφετέρο.

- Καλύψη σε περιοχές που είναι αδύνατο να καλυφθούν με χρήση χαλκού ή τηλεφωνία ίνας. Μπορεί να χρησιμοποιηθεί σαν συμπλήρωμα δικτύων οπτικών ενώ σε τμήματα της εδάφους στο οποίο το κόστος επεκτάσεως και συντήρησης δικτύων οπτικών ενώ είναι απαγορευτικά.

1 Centrino: Μια πλαγιόμεση-μικρόπλακα από την Intel, που παρουσιάζει έναν δημιουργικό συνδυασμό της επεξεργασίας (νομικά Pentium M), εξασφαλίζει μηχανικής ελευθερίας και ανάμεσα διπλής δικτύως στο σχέδιο ενός προσωπικού υπολογιστή lap-top.[WP3]
ΔΙΚΤΥΑ ΔΕΔΟΜΕΝΩΝ WIMAX – IEEE 802.16
8 Χρησιμότητα, Συμπεράσματα

8.1 Χρησιμότητα

Όπως ήταν λογικό, από τη στιγμή της εμφάνισης του νέου προτύπου τέθηκε το έρωτιμα της χρησιμότητάς του. Για να απαντηθεί το παραπάνω ερώτημα, δηλαδή κατά τόσο το WiMAX είναι χρήσιμο, είναι σημαντικό να γίνει κατανόηση η τρέχουσα κατάσταση της ευρυζωνικής ασύρματης βιομηχανίας. Το WiMAX είναι πολύ χρήσιμο, σαν μια απλή τεχνολογία ωστόσο να παρέχει σταθερή και κινητή ευρυζωνική πρόσβαση με υψηλά επίπεδα ασφάλειας και απόδοσης.

Τα πρώτα ευρυζωνικά ασύρματα συστήματα άρχισαν ως επανάσταση της τεχνολογίας των τοπικών δικτύων, γνωστής ως WiFi (ή 802.11). Αυτό το πρότυπο έχει εξελιχθεί σε παντοποίο παρόντα στα hotspots σε όλη την υδρόγειο. Ωστόσο, οι προδιαγραφές του MAC επιπέδου καθώς και τον φυσικό (PHY) συνόλο του προτύπου είναι διάφορες επιλογές για τα ασύρματα δίκτυα μικρής εμβέλειας (WAN) και τα μητροπολιτικά δίκτυα (MAN). Οι προβλέψεις αναπροσαρχίζονται και τα νέα πρότυπα όπως 802.11g και 802.11a έχουν βελτιώσει σημαντικά αυτά τα στοιχεία.

Εντούτοις, άλλα μαρτυρώνει τεχνολογίας αυτές εξελίσσονται με σκοπό την καλύτερη απόδοση στους μικρούς τόπους συνάντησης, με περιορισμένη κατάκτηση χώρων (hotspots). Πρέπει να σημειωθεί ότι οι προμηθευτές εξελίσσονται στα πρότυπα IEEE 802.11, όπως το αναμενόμενο 802.11n που δημιουργήθηκε το πρώτο βήμα κατάδικος (draft), υπόσχονται σημαντικές βελτιώσεις στο WiFi, που θα προσφέρουν σύγχρονη στα χαρακτηριστικά μεταξύ WLAN και των πιο μεγάλων συστημάτων WMAN.

Οι προβλέψεις των δυνατοτήτων της τεχνολογίας 3G και εν μέρει της 4G φαίνεται σημαντική ότι αρχίζουν να υλοποιηθούν. Και ένω αυτή η κατάσταση δείχνει να αλλάζει με τις καινοτομίες που εισάγουν κάποιες εταιρείες, όπως η Verizon χρησιμοποιούσαν το σύστημα EVDO καθώς και από τις Sprint και Cingular, τα συστήματα mobile WiMAX που βασίζονται σε νέες τεχνολογίες όπως το OFDMA, υπόσχονται υψηλότερες, αποτελεσματικότερες και γρηγορότερες εφαρμογές των ευρυζωνικών κινητών ασύρματων συστημάτων.

Το πρότυπο WiMAX έχει την εμφάνισή του τετελέσει ανάγκη για μείωση του κόστους των ασύρματων τεχνολογιών που μέχρι τώρα χρησιμοποιούνταν. Οι διαλειτουργικές λύσεις του WiMAX επιτρέπουν στα προστίγματα χρησιμοποιούνταν να υλοποιούν μεγάλης χωρητικότητας ευρυζωνικές υπηρεσίες με προσωπικό προς τους χρήστες κόστος. Αυτές οι υπηρεσίες έχουν τη δυνατότητα να εξυπηρετούν μεγάλες περιοχές κάλυψης τόσο σε κατακτήσεις οπτικής επικοινωνίας όσο και όταν δεν υπάρχει οπτική επικοινωνία μεταξύ δικτύων και σταθμού βάσης.

Αυτό είναι δυνατό να επιτευχθεί χάρη στην ισχυρή βιομηχανική υποστήριξη που παρέχεται από τον επίσημο φορέα WiMAX Forum τον οποίο απελευθερώνει πάνω από 500 μελές συμπεριλαμβανομένων των προμηθευτών εξοπλισμού και των υπηρεσιών, καθώς και του προτύπου 802.16 της IEEE, καθώς είναι ένα ανοιχτό πρότυπο, προσβάσιμο από όλους.

Το WiMAX είναι σημαντικό στην τόσο στην εφαρμογή σταθερής ασύρματης ευρυζωνικής σύνδεσης όσο και κινητής με το νέο πρότυπο 802.16e. Έτσι μπορεί να παρέχει ευρυζωνική πρόσβαση σε υπηρεσίες ωστόσο όπως DSL και καλωδιακής, άλλα και μελλοντικά σε εναλλακτικές υπηρεσίες 3G e-νη και διορμένη σε μεγάλες ταχύτητες, είτε για φωνή μέσω lόγει της Voice over IP.
8.2 Συμπεράσματα

Το WiMAX είναι το σημαντικότερο από τα ασύρματα πρότυπα που έχουν πιστοποιηθεί τόσο από την IEEE όσο και από τους 3G οργανισμούς. Ο αντίκτυπός και η χρήση εξάπλωση του oφείλει παράλληλα στον πρόγονό του, το WiFi, που έχει ήδη προκαλέσει το ενδιαφέρον στην παράκαμψη αγορά και την αποδοχή των ασύρματων επικοινωνιών. Σημαντικό ρόλο διαδραμάτισε η συμμετοχή στην εξέλιξη και στην διάδοση των νέων επιπεδών επιτευγμάτων, εταιρειών όπως τις Intel, Nokia, Intracom και Motorola. Αλλά η επίδρασή τους θα είναι ακόμη μεγαλύτερη τόσο στις επιχειρήσεις που δραστηριοποιούνται στο χώρο των ασύρματων επικοινωνιών όσο και στους απλούς χρήστες. Μέσα στα επόμενα πέντε χρόνια, αναμένεται ότι το WiMAX θα είναι η κυρίαρχη τεχνολογία στην ασύρματη δικτύωση. Θα λειτουργεί πλήρως σαν ένα κινητό δίκτυο και ακόμα θα παρέχει σταθερή ευρυζωνική πρόσβαση. Επιπλέον, θα επιτρέψει να έχουν πρόσβαση στο Διαδίκτυο, επιχειρήσεις που μέχρι τότε δεν έπρεπε να έχουν. Καθώς οι εταιρείες κυβελωτών δυτικών αναπτύσσουν συστήματα τέταρτης γενιάς (4G) που βασίζονται στο ΙΡ, κάνουν παράλληλα κινήσεις και αναζητούν τρόπους υποστήριξης του προηγμένου WiMAX, όπως κάνουν με το περιοριστικό WiFi.

Το WiMAX θα είναι η μοναδική τεχνολογία μέχρι σήμερα που μπορεί να καταστήσει δυνατή την ασύρματη πρόσβαση από κάθε σημείο. Επίσης, καθώς περισσότερο ελεύθερο φάσμα θα παρέχεται για χρήση, θα δημιουργηθεί μια τεράστια συνεργασία μεταξύ δύο κορυφαίων τομέων, της παραδοσιακής ασύρματης και της επαναστατικής κινητής επικοινωνίας.
9 Παράρτημα A – Συντομογραφίες

<table>
<thead>
<tr>
<th>Ευρρητικά</th>
<th>Ελληνικά</th>
<th>Αγγλικά</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Αδαπτόμενο Σύστημα Κεραίας</td>
<td>Adaptive Antenna System</td>
</tr>
<tr>
<td>AES</td>
<td>Αναπτυγμένος Αλγορίθμος Αποκρυπτογράφησης</td>
<td>Advanced Encryption Algorithm</td>
</tr>
<tr>
<td>ARQ</td>
<td>Παράμετρο Επανέκαμψης</td>
<td>Automatic Repeat Request</td>
</tr>
<tr>
<td>BE</td>
<td>Βέλτιστη Απόπειρα</td>
<td>Best Effort</td>
</tr>
<tr>
<td>BER</td>
<td>Ρυθμός λάθους</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BS</td>
<td>Σταθμός Βάσης</td>
<td>Base Station</td>
</tr>
<tr>
<td>BTC</td>
<td>Βασικό Κώδικα Τουρκίας</td>
<td>Block Turbo Code</td>
</tr>
<tr>
<td>BWBS</td>
<td>Κλωνικά Επιχειρησιακά Επικοινωνίες</td>
<td>Broadband Wireless Business Services</td>
</tr>
<tr>
<td>CS</td>
<td>Υποδοτικό Συνολικό Κώδικα (στο MAC επίπεδο)</td>
<td>(Service-Oriented) Convergence Sublayer (in the MAC layer)</td>
</tr>
<tr>
<td>CBR</td>
<td>Σταθερό Ρυθμό Κεφαλής</td>
<td>Constant Bit Rate</td>
</tr>
<tr>
<td>CID</td>
<td>Αναγνώριση Σύνδεσης</td>
<td>Connection Identifier</td>
</tr>
<tr>
<td>CTC</td>
<td>Κωδικός Τουρκίας</td>
<td>Convolution Turbo Code</td>
</tr>
<tr>
<td>DAMA</td>
<td>Πληροφορική Επιστολή</td>
<td>Demand Assigned Multiple Access</td>
</tr>
<tr>
<td>DES</td>
<td>Δεδομένος Αποκρυπτογράφησης</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>DFS</td>
<td>Συναρπαστική Επιλογή Συχνότητας</td>
<td>Dynamic Frequency Selection</td>
</tr>
<tr>
<td>DOCSIS</td>
<td>Επικοινωνία Κεφαλής Επικοινωνιών</td>
<td>Data Over Cable Service Interface Specification</td>
</tr>
<tr>
<td>DoS</td>
<td>Άρνηση Εξυπηρέτησης</td>
<td>Denial Of Service</td>
</tr>
<tr>
<td>ΔΙΚΤΥΑ ΔΕΔΟΜΕΝΩΝ WIMAX – IEEE 802.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line</td>
<td>Ψηφιακή Συνδρομητική Γραμμή</td>
</tr>
<tr>
<td>EAP</td>
<td>Extensible Authentication Protocol</td>
<td>Προσεκτάσιμο πρωτόκολλο επικύρωσης</td>
</tr>
<tr>
<td>FCH</td>
<td>Frame Control Header</td>
<td>Κεφαλίδα ελέγχου πλαισίου</td>
</tr>
<tr>
<td>FEC</td>
<td>Forward Error Correction</td>
<td>Προβλεπτική διόρθωση λαθών</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Division Duplexing</td>
<td>Λαμβάνει πρόσβαση διαίρεσης συχνότητας</td>
</tr>
<tr>
<td>FDM</td>
<td>Frequency Division Multiplex</td>
<td>Πολυπλεξία Διαίρεσης Συχνότητας</td>
</tr>
<tr>
<td>GPC</td>
<td>Grant Per Connection</td>
<td>Δέσμευση πόρων ανά σύνδεση</td>
</tr>
<tr>
<td>GPSS</td>
<td>Grant Per Subscriber Station</td>
<td>Δέσμευση πόρων ανά σταθμό συνδρομητή</td>
</tr>
<tr>
<td>HMAC</td>
<td>Hashed Message Authentication Code</td>
<td></td>
</tr>
<tr>
<td>HARQ</td>
<td>Hybrid Automatic Repeat reQuest</td>
<td></td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
<td></td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
<td>Τοπικό Δίκτυο</td>
</tr>
<tr>
<td>LOS</td>
<td>Line Of Sight</td>
<td>Οπτική επαφή μεταξύ πομπού και δέκτη</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Control</td>
<td>Επίπεδο ελέγχου πρόσβασης στο μέσο</td>
</tr>
<tr>
<td>MAN</td>
<td>Metropolitan Area Network</td>
<td>Μητροπολιτικό Δίκτυο</td>
</tr>
<tr>
<td>MBWA</td>
<td>Mobile Broadband Wireless Access</td>
<td></td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple-Input Multiple-Output</td>
<td></td>
</tr>
<tr>
<td>MTG</td>
<td>Mobile Technical Group</td>
<td></td>
</tr>
<tr>
<td>NLOS</td>
<td>Non Line Of Sight</td>
<td>Μη-οπτική επαφή μεταξύ πομπού και δέκτη</td>
</tr>
<tr>
<td>nrtPS</td>
<td>Non-Real-Time Polling Service</td>
<td></td>
</tr>
<tr>
<td>NWG</td>
<td>Network Working Group</td>
<td></td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency Division Multiplex</td>
<td>Ορθογώνια πολυπλεξία διαίρεσης συχνότητας</td>
</tr>
<tr>
<td>OFDMA</td>
<td>Orthogonal Frequency Division Multiple Access</td>
<td>Πολλαπλή πρόσβαση ορθογώνιας πολυπλεξίας με διαίρεση συχνότητας.</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>OSI</td>
<td>Open System Interconnection</td>
<td></td>
</tr>
<tr>
<td>PAN</td>
<td>Personal Area Network</td>
<td></td>
</tr>
<tr>
<td>PHY</td>
<td>Physical Layer</td>
<td></td>
</tr>
<tr>
<td>PHS</td>
<td>Payload Header Suppression</td>
<td></td>
</tr>
<tr>
<td>PKM</td>
<td>Privacy Key Management</td>
<td></td>
</tr>
<tr>
<td>PMD</td>
<td>Physical Media Depended</td>
<td></td>
</tr>
<tr>
<td>PMP</td>
<td>Point To Multipoint</td>
<td></td>
</tr>
<tr>
<td>PPP</td>
<td>Point to Point Protocol</td>
<td></td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
<td></td>
</tr>
<tr>
<td>rTPS</td>
<td>Real-Time Polling Service</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Security Association</td>
<td></td>
</tr>
<tr>
<td>SFID</td>
<td>Service Flow ID</td>
<td></td>
</tr>
<tr>
<td>SLA</td>
<td>Service Level Agreement</td>
<td></td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
<td></td>
</tr>
<tr>
<td>SOFDMA</td>
<td>Scalable OFDMA</td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>Subscriber Station</td>
<td></td>
</tr>
<tr>
<td>STC</td>
<td>Space Time Coding</td>
<td></td>
</tr>
<tr>
<td>TCM</td>
<td>Trellis Coded Modulation</td>
<td></td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplexing</td>
<td></td>
</tr>
<tr>
<td>TDM</td>
<td>Time Division Multiplex</td>
<td></td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
<td></td>
</tr>
<tr>
<td>TS</td>
<td>Transmission Convergence</td>
<td></td>
</tr>
<tr>
<td>UGS</td>
<td>Unsolicited Grant Service</td>
<td></td>
</tr>
<tr>
<td>VBR</td>
<td>Variable Bit Rate</td>
<td></td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
<td></td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice over IP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φυσικό Επίπεδο</td>
<td>Physical Layer</td>
</tr>
<tr>
<td>Σημείο προς πολλά σημεία</td>
<td>Point To Multipoint</td>
</tr>
<tr>
<td>Ποιότητα Υπηρεσίας</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>Κλιμακούμενο OFDMA</td>
<td>Scalable OFDMA</td>
</tr>
<tr>
<td>Σταθμός Συνδρομητή</td>
<td>Subscriber Station</td>
</tr>
<tr>
<td>Σύγκλιση Μετάδοσης</td>
<td>Transmission Convergence</td>
</tr>
<tr>
<td>Ιδιωτικό Δίκτυο</td>
<td>Virtual Private Network</td>
</tr>
<tr>
<td>Τηλεφωνία μέσω internet</td>
<td>Voice over IP</td>
</tr>
<tr>
<td>ΔΙΚΤΥΑ ΔΕΔΟΜΕΝΩΝ WIMAX – IEEE 802.16</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
<tr>
<td>WiFi</td>
<td>Wireless Fidelity</td>
</tr>
<tr>
<td>WISP</td>
<td>Wireless Internet Services Provider</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless LAN</td>
</tr>
<tr>
<td>WMAN</td>
<td>Wireless MAN</td>
</tr>
</tbody>
</table>
10 Παράρτημα Β – Πληροφορίες

10.1 OFDM

Ένας από τους χαρακτηριστικούς λόγους υιοθέτησης του OFDM ως του μοντέλου διαμόρφωσης για ένα ασύμμετρο τηλεπικοινωνιακό σύστημα είναι η μεγάλη αντοχή που επιδεικνύει σε περιβάλλοντα εξαιρετήςς σήματος και παρεμβολών. Σε συστήματα μονής φάσης ένας επίδοξος παρεμβολέας μπορεί να προκαλέσει ακόμα και την κατάρρευση ενός link, σε αντίθεση με τα συστήματα πολλών φάσεων, όπου ένα μικρό μόνο ποσοστό των φάσεων θα επηρεαστεί. Μία από τις προτεινόμενες λύσεις για βελτίωση αντιμετώπισης του προβλήματος είναι η χρήση Κώδικα Διόρθωσης Σφάλματος (Error Correction Coding).

Το OFDM έχει πολλά πλεονεκτήματα. Αρχικά, το "επιθέσιο" της συγκόντης επηρεάζει μόνο μερικά υποκανάλια και δεν ολοκληρώνει το σήμα. Εάν το data stream προστατεύεται από Κώδικα Διόρθωσης Σφάλματος, αυτό το πρόβλημα μπορεί εύκολα να αντιμετωπιστεί. Το πιο σημαντικό είναι το ότι το OFDM εξασφαλίζει τις intersymbol parásses (intersymbol interference – ISI) σε ένα περιβάλλον πολυδιόδευσης. Το ISI έχει μεγάλο αντίστοιχο στη ψηφιακή bit rates επιπέδο και αυξάνεται ανάμεσα στα bits ή τα σήματα είναι μικρότερη. Με το OFDM το data rate μειώνεται σε παράγοντα και έτσι αυξάνεται ο χρόνος. Επίσης, εάν η περίοδος του σήματος είναι τετ., για το stream της πηγής, η περίοδος των σήματων OFDM γίνεται λίγο, επομένως μειώνεται η επίδραση του ISI. Παρεμβολικά, το OFDM επερχόταν ώστε να είναι σημαντικά μεγαλύτερο από τον φάσμαν καθοδηγήση στο κανάλι.

Συνοπτικά, λοιπόν, τα πολλαπλάσια από τα πλεονεκτήματα χρήσης του OFDM είναι τα ακόλουθα:

Το OFDM αντιμετωπίζει αποτελεσματικά το φαινόμενο της πολυδιόδευσης (multipath) ενώ η πολυπαράστηση ενός OFDM συστήματος είναι ασιλήτης μικρότερη από ένα σύστημα μονής φάσης (SC) με χρήση isosatathistomh, ο οποίος θα αναλαμβάνει το ίδιο έργο.

Σε συστήματα όπου οι διάλογοι μετάδοσης μεταβάλλονται πολύ αρχικά σε σχέση με τη συγκόντης μετάδοσης των δεδομένων είναι εφικτή η αύξηση της χαρακτηριστικά με την ανάλογη προσαρμογή της συγκόντης δεδομένων ανά υποκανάλια σε σχέση πάντα και με το λόγο σήματος προς θρόησμα για το συγκεκριμένο κανάλι (SNR).

Το OFDM είναι εξαιρετικά ανθεκτικό στην παρεμβολή στενού φάσματος διότι τέτοιοι είδους παρεμβολή επηρεάζει μόνο ένα μικρό ποσοστό των υποκαναλίων.

Ένα σχετικά σχέδια διαμόρφωσης που χρησιμοποιείται με το OFDM είναι το quadrature phase shift keying (QPSK). Σε αυτή την παράταση κάθε σύμβολο που μεταδίδεται αναπαριστά δύο bits. Ένα παράδειγμα του OFDM/QPSK σχήματος που χρησιμοποιείται σε MMDS (Multichannel Multipoint Distribution Service) συστήματα αποτελεί 6 MHz που αποτελούνται από 512 διαφορετικούς κωμίσις με διαχωρισμό λόγο γάλακτο από 12 kHz. Για να ελαχιστοποιήσει το ISI τα δεδομένα μεταβάλλονται σε μαζικά σε υποκανάλια, υποκειόμενα αποτελούνται από ένα κυκλικό πρόθεμα που ακολουθείται από τα σύμβολα δεδομένων. Στο κυκλικό αυτό πρόθεμα χρησιμοποιείται για την απογεύματος των μεταβολών τάσης από τις προηγούμενες μεταβολές που δημιουργούνται από την πολυδιόδευση. Για το συγκεκριμένο σύστημα, το κυκλικό πρόθεμα αποτελείται από 64 σύμβολα που ακολουθούνται από 512 QPSK σύμβολα σε κάθε μετάδοση. Σε κάθε υποκανάλι επομένως τα QPSK σύμβολα διαχωρίζονται από ένα πρόθεμα διάρκειας 64/512. Γενικά, όταν το πρόθεμα γινόταν στο τέλος, η ακόλουθη κωμίσιμοηροφοροφία επιμεταβάλλεται από τα συνδυασμένα σήματα πολυδιόδευσης δεν είναι λειτουργία δειγμάτων από την προηγούμενη μετάδοση, και έτσι δεν υπάρχει ISI.
Το 802.16 χρησιμοποιεί συνολικά τρία συστήματα διαμόρφωσης ανάλογα με την απόσταση του σταθμού συνδρομητή από τον σταθμό βάσης. Εκτός από το QPSK που είδαμε προηγουμένως και το χρησιμοποιείται για μικρούς συνδρομητές, υπάρχουν ακόμα δύο μέθοδοι διαμόρφωσης: η 64-QAM (Quadrature Amplitude Modulation) για κοντινούς συνδρομητές και η 16-QAM για συνδρομητές σε μεσαία απόσταση.

[ΠΠΠ] [WIL2]

10.2 QAM modulations:

β) ½ 16 QAM

Το σχήμα 8 δείχνει τον TCM κωδικοποιητή βαθμού ½ για την διαμόρφωση 16QAM. Πρώτα παράγει έναν 2-bit κατάλογο, b1,b2, που συνδέεται με την συντεταγμένη I. Έχοντας την επόμενη είσοδο του κωδικοποιητή, παράγει ένα 2-bit κατάλογο, b3,b4, που συνδέεται με την μεταβλητή Q. Η δημιουργία του I κατάλογου θα προηγείται της δημιουργίας του Q καταλόγου. Αυτός ο κωδικοποιητής θα έπρεπε να ονομάζεται 16 QAM δείχνει τον κωδικοποιητή του τρίτου, διαμόρφωσης κατάλογου. Γι' αυτό το λόγο, είσοδοι μήκους διαφορούν με το 2/4 συμβόλα με την είσοδο 2 bits. Γι' αυτό το λόγο, είσοδοι μήκους διαφορούν με το 2/4 συμβόλα με την είσοδο 2 bits. Γι' αυτό το λόγο, είσοδοι μήκους διαφορούν με το 2/4 συμβόλα με την είσοδο 2 bits. Πρώτα με την καταλόγη Q, επόμενη θα τα κάνει ο κωδικοποιητής παραπάνω απόσταση.

γ) ¾ 16 QAM

Το σχήμα δείχνει τον TCM κωδικοποιητή βαθμού ¾ για την διαμόρφωση 16QAM. Αυτός ο κωδικοποιητής χρησιμοποιεί τον δυαδικό κωδικοποιητή συνάθροισης βαθμού ½, μαζί με δύο bits που περιέχει την επόμενη είσοδο του κωδικοποιητή, συντεταγμένη και την ακόλουθη. Με αυτή τη δομή, ο κωδικοποιητής μπορεί να παράγει τετράχρονα τέσσερα εξερχόμενα bits για κάθε τρία εισερχόμενα bits. Για την είσοδο u1,u2, πρώτη στην κωδικοποιητή φτάνει το u1, δεύτερο τo u2 και τρίτο το u3. Κατά τη διάρκεια της διαμόρφωσης, ο κωδικοποιητής δημιουργεί ένα 2-bit κατάλογο, b1,b2, για την συντεταγμένη I και ένα 2-bit κατάλογο, b3,b4, για την συντεταγμένη Q. Όλα τα σύμβολα θα μεταβληθούν σε συνδρομητής και όλες τις εισόδους μήκους διαφορούν με το τρία ή τετράχρονα σε αυτόν τον κωδικοποιητή.

10.3 Interleaving στο OFDM

To interleaving είναι ένα μηχανισμός που χρησιμοποιείται στο OFDM για να καταπολεμήσει τα αυξημένα ρυθμούς λαθών στις πιο αδύναμες φάρσους. Είναι μία στοχαστική διαδικασία που αναδιάτασσει την σειρά των μεταδόθηκεν bits. Για τα συστήματα OFDM αυτό πρακτικά σημαίνει ότι bits που έχουν διαδοθεί σε ένα χρόνο μεταδίδονται μεταξύ τους από διαφορετικές ισχυρότητες. Έτσι, λάθη που δημιουργούνται στις αδύναμες φάρσους διασκορπίζονται στο χρόνο και έτσι αντιμετωπίζεται η μικρότερη αδύναμη της λαθείας των μικρότερων συχνοτήτων στα παράγοντα καταλόγου. Αυτός ο μηχανισμός άκριβης λαβής οφείλεται στις πιο αδύναμες φάρσους διαδικασίας φάρσους διαδικασίας φάρσους [CD1].

Πλεονεκτήματα του interleaving:

β Η επικοινωνία προστατεύεται από λάθη από συμβολικούς ρυθμούς (burst errors)

β Δεν απαιτείται να μεταδοθεί καθώς η φάση της πληροφορίας, έτσι η διαδικασία εσόδος πρακτικά παραμένει το ίδιο

Μειονεκτήματα:

β Αυξημένη καθυστέρηση

10.4 Automatic Repeat Request (ARQ)

Μηχανισμός που είναι υπεύθυνος για την αξιοπιστία ενός δικτύου. Σε κάθε πακέτο που αποστέλλεται προσθέτεται και μία επιπέδες επικοινωνία που φέρει έναν αξίων αριθμό. Όταν το πακέτο παραλαμβάνει έναν αριθμό αριθμών, οι οποίοι έχουν αρίθμηση της προηγούμενης περιοχής της μηχανής ενημέρωσης του αριθμού που παραλαμβάνει το πακέτο, στελεχώνται μία επιμολύοντας τον αριθμό που παρείχε το πακέτο. Σε περίπτωση που ο
αποστολέας δεν λάβει αυτήν την επιβεβαίωση σε ένα προκαθορισμένο χρονικό διάστημα, ξαναστέλνει το πακέτο.

10.5 Adaptive Antenna Systems (AAS) και συστήματα Multiple-Input Multiple-Output (MIMO)

Και οι δύο τεχνολογίες που θα δούμε στην συνέχεια, προσπαθούν να μεγιστοποιήσουν την χωρητικότητα του καναλιού, είτε με την βελτίωση της ποιότητας της ζεύξης, όπως το SNR, είτε αυξάνοντας το διαθέσιμο χώρο με ειδικές τεχνικές επεξεργασίας σήματος και κωδικοποίησης. Και οι δύο αυτές τεχνολογίες περιστρέφονται γύρω από το πολύ γνωστό φαινόμενο της διάδοσης, που συναντάει αλλά και σε άλλα ελεκτromαγνητικά φαινόμενα, είναι πολύ συνηθισμένο στα ασύρματα τηλεπικοινωνιακά συστήματα και είναι πολύ ψηφιακές και έντονες σε αστικά, πυκνοκατοικημένα περιβάλλοντα. Η κυρίως διαφορά των AAS συστημάτων σε σχέση με τα MIMO είναι ενώ τα AAS προσπαθούν απλά να το εξαλείψουν ή να το αντισταθμίσουν, τα MIMO συστήματα μπορούν να το εκμεταλλευτούν προς οφέλος τους.

Η τεχνολογία που χρησιμοποιείται από τα AAS συστήματα συχνά αναφέρεται και ως τεχνολογία «έξυπνων κεραίων» λόγω της δυνατότητας του να καταλήξει σε κατάλληλη στις εκάστοτε συνθήκες, με σκοπό την βελτιστοποίηση της απόδοσης του συστήματος, δηλαδή την χωρητικότητα του καναλιού. Συνήθως, οι AAS συστήματα όταν λέμε πολλαπλές κεραίες εννοούμε μία κεραία που αποτελείται από πολλά μικρότερα στοιχεία. Είτε αυτά τα συστήματα κεραίας, με διάφορως αλγόριθμους επεξεργασίας σήματος, μπορούν να αλλάξουν δυναμικά τα γεωμετρικά χαρακτηριστικά της συνολικής απολαβής ανάλογα με τις εκάστοτε συνθήκες. Με αυτόν τον τρόπο μπορούν να μεταβάλλουν την χωρική κατανομή του σήματος που εκπέμπεται (αφού χρήσιμος χρησιμοποιείται στους πομπούς και όχι στους δέκτες λόγω κόστους), κατευθύνοντας έτσι με καλύτερο τρόπο το σήμα.[HUT]
Το μοντέλο αναφοράς για τα AAS συστήματα

Τα συστήματα MIMO μπορούν επίσης να οριστούν πολύ εύκολα. Για ένα ασύμμετρο σύστημα επικοινωνιών, το MIMO αναφέρεται σε μία ζεύξη, όπου τόσο ο πομπός όσο και ο δέκτης είναι εξοπλισμένοι με πολλαπλές κεραίες όπως φαίνεται στο επόμενο σχήμα.

Η ιδέα πίσω από την τεχνολογία αυτή είναι ότι τα σήματα στις κεραίες που εκπέμπουν στο ένα άκρο και σε αυτές που λαμβάνουν στο άλλο άκρο «συνδυάζονται» με τέτοιο τρόπο ώστε η ποιότητα (ρυθμός λάθους – Bit Error Rate) ή ο ρυθμός μετάδοσης (Bit/Sec) του συστήματος να βελτιώνεται. Τα συστήματα αυτά χρησιμοποιούν space-time processing τεχνικές με τρόπο όπου ο χρονική διάσταση (ή χορωδιακή διάσταση των εκπομπώμενων σήματων) συνδυάζεται με την χωρική διάσταση που προέρχεται από τις πολλαπλές κεραίες. Τα συστήματα αυτά μπορούν μέχρι ένα βαθμό να θεωρούν μία προέκταση των συστημάτων που χρησιμοποιούν την τεχνολογία έξυπνων κεραιών, όπως αναφέρθηκε και πριν ΑΑΣ [IEE1], μία δημοφιλή τεχνολογία για την βελτίωση της ασύμμετρης επικοινωνίας που εφεύρεθη το '70. Όμως, το μαθηματικό υπόβαθρο των MIMO περιβαλλόντων μπορεί να προσφέρει αποδόσεις που ξεφεύγουν κατά πολύ από αυτές των εξυπνωμένων κεραιών. Ισώς το πιο εντυπωσιακό χαρακτηριστικό των MIMO συστημάτων είναι η δυνατότητα που έχουν να μετατρέψουν την παρεμβολή λόγω πολλαπλών διαδρόμων, που συνήθως αποτελεί τροχοπέδη των ασύμμετρων συστημάτων, σε πλεονέκτημα, αυξάνοντας τους ρυθμούς μετάδοσης δεδομένων [WPC], [BLT].

Χωρίς να υπεισέρθουμε σε μαθηματικές και τεχνικές λεπτομέρειες (τις οποίες ο ενδιαφερόμενος μπορεί να βρει στα [IN2],[IEEE2],[CRC1],[WIL1],[WIL2],[T1]), είναι ακόμα ενεργή η τεχνολογία του Shannon, τόσο σε συστήματα έξυπνων κεραιών, όσο και σε συστήματα MIMO. Έτσι, όπως γνωρίζουμε από το θεώρημα του Shannon, η μέγιστη χωρητικότητα ενός τηλεπικοινωνιακού καναλίου, με δεδομένο SNR = ρ λόγω προσθετικού λευκού Γκαουσιανού θορύβου, βρίσκεται από τον τύπο:

55
ΔΙΚΤΥΑ ΔΕΔΟΜΕΝΩΝ WIMAX – IEEE 802.16

\[C = \log_2 (1 + \rho) \text{Bit/sec/Hz} \]

Στην πραγματικότητα όμως για τα ασύρματα κανάλια η εξασθένηση του σήματος αλλάζει με την πάροδο του χρόνου κατά τυχαίο τρόπο. Είτε μπορούμε να πούμε ότι ο τύπος για την χωρητικότητα του καναλιού γίνεται:

\[C = \log_2 (1 + \rho|h|^2) \text{Bit/sec/Hz}, \text{όπου} \ h \ \text{τυχαία Γκαουσιανή μεταβλητή.} \]

Είτε η χωρητικότητα C γίνεται μία τυχαία μεταβλητή, η κατανομή της οποίας μπορεί να υπολογιστεί.

Για ένα SIMO σύστημα τώρα, όπου ο δέκτης έχει ένα σύνολο από M κεραίες με \(h=[h_0, h_1, \ldots, h_m] \) έχουμε ότι:

\[C = \log_2 (1 + \rho|h|^2) \text{Bit/sec/Hz} \]

Ας δούμε τι γίνεται τώρα σε ένα MIMO σύστημα με N κεραίες εκπομπής και M κεραίες λήψης. Το κανάλι μας μπορεί να αναπαρασταθεί από έναν πίνακα M x N τυχαία, ανεξάρτητα στοιχεία, αναφερόμενα ως \(H \). Όπως έχει αποδειχθεί [BLTJ], [BLMT] ότι η χωρητικότητα ισούται με:

\[C = \log_2 \left(\frac{\det(I_m + \frac{\rho}{N} HH^*)}{N} \right) \text{Bit/sec/Hz}, \text{όπου} \ \rho \ \text{το μέσο SNR σε οποιαδήποτε κεραία} \]

Μπορούμε να δούμε στις γραφικές παραστάσεις ότι το πλεονέκτημα των MIMO κεραιών είναι εξαιρετικά μεγάλο. Στην πράξη, για ένα μεγάλο αριθμό M = N κεραιών η μέση χωρητικότητα του συστήματος \(C_0 \) αυξάνει γραμμικά με το M:

\[C_0 = M \log_2 (1 + \rho) \text{Bit/sec/Hz} \]
11 Παράρτημα Γ – Μέλη του WiMAX Forum

Agilent
Airspan Networks
Alvarion
Aperto Networks
Atheros
Compliance Certification Services
Ensemble Communications
Fujitsu Microelectronics America
Hughes Network Systems
Intel
Intracom
NewsIQ
NIST
Nokia
OFDM Forum
Powerwave Technologies
Proxim
Redline Communications
RF Integration
Siware
SI Works
SR Telecom
Telenecity Group
Towerstream
Turbo Concept
Wavesat
Wi-LAN
Winova Wireless
12 Βιβλιογραφία

[HUT] Helsinki University of Technology, Communications Lab : An overview of Adaptive Antenna Systems – Hafeth Hourani

[IQA] Inbuilt QoS Advantage WiMAX - Aravind Seshagiri 2005

[IN1] Intel: Understanding WiFi and WiMAX as Metro-Access Solutions

[IN2] Intel Technology Journal Vol.8 Issue 3: Multiple-Antenna Technology in WiMAX Systems - Atul Salvekar, Sumeet Sandhu, Qinghua Li, Minh-Anh Vuong, Xiaoshu Qian

[RCL] Redline Communications : From “a” to “e”: The 802.16 Standard Evolution - Kevin F. R. Suitor

[ΠΠ1] Πολυτεχνική Σχολή Πανεπιστημίου Πατρών, Τμήμα Μηχανικών Η/Υ και Πληροφορικής : Ασύρματα Τοπικά Δίκτυα Συμβατά με το Πρότυπο IEEE 802.16 (WiMAX), 2005 – Τσαντήλας Κ., Πάσχου Μ., Ραψομανίκη Μ.

[PH1] Prentice Hall : Multimedia Wireless Networks - Technologies Standards And QoS

[WMO] Overview of WiMAX IEEE 802.16 - Alan Barry, George Healy, Cian Daly, Joseph Johnson and Ronan J. Skehill

